124 research outputs found

    Propargylglycine inhibits hypotaurine/taurine synthesis and elevates cystathionine and homocysteine concentrations in primary mouse hepatocytes

    Get PDF
    Our investigation showed that hepatocytes isolated from cysteine dioxygenase knockout mice (Cdo1(βˆ’/βˆ’)) had lower levels of hypotaurine and taurine than Cdo1(+/+) hepatocytes. Interestingly, hypotaurine accumulates in cultured wild-type hepatocytes. dl-propargylglycine (PPG, inhibitor of cystathionine Ξ³-lyase and H(2)S production) dramatically decreased both taurine and hypotaurine levels in wild-type hepatocytes compared to untreated cells. Addition of 2Β mM PPG resulted in the decrease of the intracellular taurine levels: from 10.25Β Β±Β 5.00 observed in control, to 2.53Β Β±Β 0.68Β nmol/mg protein (24Β h of culture) and from 17.06Β Β±Β 9.40 to 2.43Β Β±Β 0.26Β nmol/mg protein (control vs. PPG; 48Β h). Addition of PPG reduced also intracellular hypotaurine levels: from 7.46Β Β±Β 3.55 to 0.31Β Β±Β 0.12Β nmol/mg protein (control vs. PPG; 24Β h) and from 4.54Β Β±Β 3.20 to 0.42Β Β±Β 0.11Β nmol/mg protein (control vs. PPG; 48Β h). The similar effects of PPG on hypotaurine and taurine levels were observed in culture medium. PPG blocked hypotaurine/taurine synthesis in wild-type hepatocytes, suggesting that it strongly inhibits cysteinesulfinate decarboxylase (pyridoxal 5β€²-phosphate-dependent enzyme) as well as cystathionine Ξ³-lyase. In the presence of PPG, intracellular and medium cystathionine levels for both wild-type and Cdo1(βˆ’/βˆ’) cells were increased. Addition of homocysteine or methionine resulted in higher intracellular concentrations of homocysteine, which is a cosubstrate for cystathionine Ξ²-synthase (CBS). It seems that PPG increases CBS-mediated desulfhydration by enhancing homocysteine levels in hepatocytes. There were no overall effects of PPG or genotype on intracellular or medium glutathione levels

    Molecular Characterization and Patient Outcome of Melanoma Nodal Metastases and an Unknown Primary Site

    Get PDF
    Background Melanoma of unknown primary site (MUP) is not a completely understood entity with nodal metastases as the most common first clinical manifestation. The aim of this multicentric study was to assess frequency and type of oncogenic BRAF/NRAS/KIT mutations in MUP with clinically detected nodal metastases in relation to clinicopathologic features and outcome. Materials and Methods We analyzed series of 103 MUP patients (period: 1992-2010) after therapeutic lymphadenectomy (LND): 40 axillary, 47 groin, 16 cervical, none treated with BRAF inhibitors. We performed molecular characterization of BRAF/NRAS/KIT mutational status in nodal metastases using direct sequencing of respective coding sequences. Median follow-up time was 53 months. Results BRAF mutations were detected in 55 cases (53 %) (51 V600E, 93 %; 4 others, 7 %), and mutually exclusive NRAS mutations were found in 14 cases (14 %) (7 p.Q61R, 4 p.Q61K, 2 p.Q61H, 1 p.Q13R). We have not detected any mutations in KIT. The 5-year overall survival (OS) was 34 %; median was 24 months. We have not found significant correlation between mutational status (BRAF/NRAS) and OS; however, for BRAF or NRAS mutated melanomas we observed significantly shorter disease-free survival (DFS) when compared with wild-type melanoma patients (p = .04; 5-year DFS, 18 vs 19 vs 31 %, respectively). The most important factor influencing OS was number of metastatic lymph nodes >1 (p = .03). Conclusions Our large study on molecular characterization of MUP with nodal metastases showed that MUPs had molecular features similar to sporadic non-chronic-sun-damaged melanomas. BRAF/NRAS mutational status had negative impact on DFS in this group of patients. These observations might have potential implication for molecular-targeted therapy in MUPs

    Localization of a bacterial group II intron-encoded protein in human cells

    Get PDF
    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.This work was supported by research grants CSD 2009–0006 from the Consolider-Ingenio, BIO2011-24401 and BIO2014-51953-P from the Spanish Ministerio de EconomΓ­a y Competitividad all including ERDF (European Regional Development Funds). We thank Dr. Antonio Barrientos DurΓ‘n for technical advice. MRC was supported by an FPI Ph.D grant. J.L.G.PΒ΄s laboratory is supported by CICE-FEDER-P09-CTS-4980, CICE-FEDER-P12-CTS-2256, Plan Nacional de I+D+I 2008–2011 and 2013–2016 (FIS-FEDER-PI11/01489 and FIS-FEDER-PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764) and by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420).Peer Reviewe

    Statistical Inference of In Vivo Properties of Human DNA Methyltransferases from Double-Stranded Methylation Patterns

    Get PDF
    DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model (HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo at three loci in humans: two densely methylated inactive X (Xi)-linked loci ( and ), and an autosomal locus (), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity of DNMT1 at and , with the mean association tract length being a few hundred base pairs. Regardless of tissue types, methylation patterns at are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker processivity), and much longer non-association tracts than human DNMT1 in vivo

    Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur

    Get PDF
    Purpose of review: This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings: The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5–40 mg/L and for anticancer 20–100 ΞΌM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary: Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells

    Structure Analysis of Entamoeba histolytica DNMT2 (EhMeth)

    Get PDF
    In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNAAsp, tRNAVal, tRNAGly). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 Γ…, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth

    FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (nβ€Š=β€Š8), dysplasias (nβ€Š=β€Š5) and head and neck squamous cell carcinoma (HNSCC) cell lines (nβ€Š=β€Š11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions

    Transcriptome Characterization by RNA-seq Unravels the Mechanisms of Butyrate-Induced Epigenomic Regulation in Bovine Cells

    Get PDF
    Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells
    • …
    corecore