22 research outputs found

    Multicenter clinical evaluation of the Luminex Aries Flu A/B & RSV assay for pediatric and adult respiratory tract specimens

    Get PDF
    ABSTRACT Influenza A and B viruses and respiratory syncytial virus (RSV) are three common viruses implicated in seasonal respiratory tract infections and are a major cause of morbidity and mortality in adults and children worldwide. In recent years, an increasing number of commercial molecular tests have become available to diagnose respiratory viral infections. The Luminex Aries Flu A/B &amp; RSV assay is a fully automated sample-to-answer molecular diagnostic assay for the detection of influenza A, influenza B, and RSV. The clinical performance of the Aries Flu A/B &amp; RSV assay was prospectively evaluated in comparison to that of the Luminex xTAG respiratory viral panel (RVP) at four North American clinical institutions over a 2-year period. Of the 2,479 eligible nasopharyngeal swab specimens included in the prospective study, 2,371 gave concordant results between the assays. One hundred eight specimens generated results that were discordant with those from the xTAG RVP and were further analyzed by bidirectional sequencing. Final clinical sensitivity values of the Aries Flu A/B &amp; RSV assay were 98.1% for influenza A virus, 98.0% for influenza B virus, and 97.7% for RSV. Final clinical specificities for all three pathogens ranged from 98.6% to 99.8%. Due to the low prevalence of influenza B, an additional 40 banked influenza B-positive specimens were tested at the participating clinical laboratories and were all accurately detected by the Aries Flu A/B &amp; RSV assay. This study demonstrates that the Aries Flu A/B &amp; RSV assay is a suitable method for rapid and accurate identification of these causative pathogens in respiratory infections.</jats:p

    NmcA Carbapenem-hydrolyzing Enzyme in Enterobacter cloacae in North America1

    Get PDF
    An imipenem-resistant Enterobacter cloacae isolate was recovered from the blood of a patient with a hematologic malignancy. Analytical isoelectric focusing, inhibitor studies, hydrolysis, induction assays, and molecular sequencing methods confirmed the presence of a NmcA carbapenem-hydrolyzing enzyme. This first report of NmcA detected in North America warrants further investigation into its distribution and clinical impact

    Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon

    Get PDF
    Two biofilmreactors operated with hydraulic retention times of 0.8 and 5.0 h were used to study the links between population dynamics and reactor operation performance during a shift in process operation from pure nitrification to combined nitrification and organic carbon removal. The ammonium and the organic carbon loads were identical for both reactors. The composition and dynamics of the microbial consortia were quantified by fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes combined with confocal laser scanning microscopy, and digital image analysis. In contrast to past research, after addition of acetate as organic carbon nitrification performance decreased more drastically in the reactor with longer hydraulic retention time. FISH analysis showed that this effect was caused by the unexpected formation of a heterotrophic microorganism layer on top of the nitrifying biofilm that limited nitrifiers oxygen supply. Our results demonstrate that extension of the hydraulic retention time might be insufficient to improve combined nitrification and organic carbon removal in biofilm reactors.Ministério da Ciência, Tecnologia e Ensino Superior. Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI BD/15943/98). Deutscher Akademischer Austauschdienst (A/99/06961). European Comission - T.M.R. BioToBio project. Deutsche Forschungsgemeinschaft

    Abundance and Phylogenetic Affiliation of Iron Reducers in Activated Sludge as Assessed by Fluorescence In Situ Hybridization and Microautoradiography

    No full text
    Microautoradiography (MAR) was used to enumerate acetate-consuming bacteria under Fe(III)-reducing conditions in activated sludge. This population is believed to consist of dissimilatory iron-reducing bacteria, because the applied incubation conditions and the use of specific inhibitors excluded consumption of radiolabeled acetate by other physiological groups such as sulfate reducers. By use of this approach, dissimilatory iron reducers were found in a concentration of 1.1 × 10(8) cells per ml, corresponding to approximately 3% of the total cell count as determined by DAPI (4′,6′-diamino-2-phenylindoledihydrochloride-dilactate) staining. The MAR enumeration method was compared to the traditional most-probable-number (MPN) method (FeOOH-MPN) and a modified MPN method, which contains Ferrozine directly within the MPN dilutions to determine the production of small amounts of ferrous iron (Ferrozine-MPN). The Ferrozine-MPN method yielded values 6 to 10 times higher than those obtained by the FeOOH-MPN method. Nevertheless, the MAR approach yielded counts that were 100 to 1,000 times higher than those obtained by the Ferrozine-MPN method. Specific in situ Fe(III) reduction rates per cell (enumerated by the MAR method) were calculated and found to be comparable to the respective rates for pure cultures of dissimilatory iron-reducing bacteria, suggesting that the new MAR method is most reliable. A combination of MAR and fluorescence in situ hybridization was used for phylogenetic characterization of the putative iron-reducing bacteria. All activated-sludge cells able to consume acetate under iron-reducing conditions were targeted by the bacterial oligonucleotide probe EUB338. Around 20% were identified as gamma Proteobacteria, and 10% were assigned to the delta subclass of Proteobacteria

    Accuracies of β-Lactam Susceptibility Test Results for Pseudomonas aeruginosa with Four Automated Systems (BD Phoenix, MicroScan WalkAway, Vitek, and Vitek 2)

    No full text
    Contemporary clinical isolates and challenge strains of Pseudomonas aeruginosa were tested by four automated susceptibility testing systems (BD Phoenix, MicroScan WalkAway, Vitek, and Vitek 2; two laboratories with each) against six broad-spectrum β-lactams, and the results were compared to reference broth microdilution (BMD) and to consensus results from three validated methods (BMD, Etest [AB Biodisk, Solna, Sweden], and disk diffusion). Unacceptable levels of error (minor, major, and very major) were detected, some with systematic biases toward false susceptibility (piperacillin-tazobactam and imipenem) and others toward false resistance (aztreonam, cefepime, and ceftazidime). We encourage corrective action by the system manufacturers to address test biases, and we suggest that clinical laboratories using automated systems should consider accurate alternative methods for routine use

    Combining fluorescent in situ hybridization (FISH) with cultivation and mathematical modeling to study population structure and function of ammonia-oxidizing bacteria in activated sludge

    No full text
    16S rRNA-targeted oligonucleotide probes for phylogenetically defined groups of autotrophic ammonia-oxidizing bacteria were used for analyzing the natural diversity of nitrifiers in an industrial sewage treatment plant receiving sewage with high ammonia concentrations. In this facility discontinuous aeration is used to allow for complete nitrification and denitrification. In situ hybridization revealed a yet undescribed diversity of ammonia oxidizers occurring in the plant. Surprisingly, the majority of the ammonia oxidizers were detected with probe combinations which indicate a close affiliation of these cells with Nitrosococcus mobilis. In addition, low numbers of ammonia-oxidizers related to the Nitrosomonas europaea Nitrosomonas eutropha cluster were present. Interestingly, we also observed hybridization patterns which suggested the occurrence of a novel population of ammonia oxidizers. Confocal laser scanning microscopy revealed that all specifically stained ammonia oxidizers were clustered in microcolonies formed by rod-shaped bacteria. Combination of FISH and mathematical modeling was used to investigate diffusion limitation of ammonia and O-2 within these aggregates. Model simulations suggest that mass transfer limitations inside the clusters are not as significant as the substrate limitations due to the activity of surrounding heterotrophic bacteria. To learn more about the ammonia-oxidizers of the industrial plant, we enriched and isolated ammonia-oxidizing bacteria from the activated sludge by combining classical cultivation techniques and FISH. Monitoring the isolates with the nested probe set allowed us to specifically identify those ammonia oxidizers which were found in situ to be numerically dominant. The phylogenetic relationship of these isolates determined by comparative 16S rDNA sequence analysis confirmed the affiliation suggested by FISK
    corecore