94 research outputs found
Three Dimensional Superconductivity in FeSe with Tczero Up to 10.9 K Induced by Internal Strain
Polycrystalline sample FeSe was synthesized by a self-flux solution method
which shows a zero resistance temperature up to 10.9 K and a Tconset (90%
\rhon, \rhon: normal state resistivity) up to 13.3 K. The decrease of
superconducting transition temperature by heat treatment indicates that
internal crystallographic strain which plays the same effect as external
pressure is the origin of its high Tc. The fluctuation conductivity was studied
which could be well described by 3D Aslamazov-Larkin (AL) power law. The
estimated value of coherence length \xic=9.2 \AA is larger than the distance
between conducting layers (~6.0 \AA), indicating the three-dimensional nature
of superconductivity in this compound.Comment: 5 figure
USED: Universal Speaker Extraction and Diarization
Speaker extraction and diarization are two crucial enabling techniques for
speech applications. Speaker extraction aims to extract a target speaker's
voice from a multi-talk mixture, while speaker diarization demarcates speech
segments by speaker, identifying `who spoke when'. The previous studies have
typically treated the two tasks independently. However, the two tasks share a
similar objective, that is to disentangle the speakers in the spectral domain
for the former but in the temporal domain for the latter. It is logical to
believe that the speaker turns obtained from speaker diarization can benefit
speaker extraction, while the extracted speech offers more accurate speaker
turns than the mixture speech. In this paper, we propose a unified framework
called Universal Speaker Extraction and Diarization (USED). We extend the
existing speaker extraction model to simultaneously extract the waveforms of
all speakers. We also employ a scenario-aware differentiated loss function to
address the problem of sparsely overlapped speech in real-world conversations.
We show that the USED model significantly outperforms the baselines for both
speaker extraction and diarization tasks, in both highly overlapped and
sparsely overlapped scenarios. Audio samples are available at
https://ajyy.github.io/demo/USED/.Comment: Submitted to ICASSP 202
7. 直腸閉鎖の一治験例(第510回千葉医学会例会 第7回佐藤外科例会)
The chronological course of foliar NtARF8, NtARF17, and NtARF19 expression during the vegetative growth process. (PDF 40Â kb
MAS: A versatile Landau-fluid eigenvalue code for plasma stability analysis in general geometry
We have developed a new global eigenvalue code, Multiscale Analysis for
plasma Stabilities (MAS), for studying plasma problems with wave toroidal mode
number n and frequency omega in a broad range of interest in general tokamak
geometry, based on a five-field Landau-fluid description of thermal plasmas.
Beyond keeping the necessary plasma fluid response, we further retain the
important kinetic effects including diamagnetic drift, ion finite Larmor
radius, finite parallel electric field, ion and electron Landau resonances in a
self-consistent and non-perturbative manner without sacrificing the attractive
efficiency in computation. The physical capabilities of the code are evaluated
and examined in the aspects of both theory and simulation. In theory, the
comprehensive Landau-fluid model implemented in MAS can be reduced to the
well-known ideal MHD model, electrostatic ion-fluid model, and drift-kinetic
model in various limits, which clearly delineates the physics validity regime.
In simulation, MAS has been well benchmarked with theory and other gyrokinetic
and kinetic-MHD hybrid codes in a manner of adopting the unified physical and
numerical framework, which covers the kinetic Alfven wave, ion sound wave,
low-n kink, high-n ion temperature gradient mode and kinetic ballooning mode.
Moreover, MAS is successfully applied to model the Alfven eigenmode (AE)
activities in DIII-D discharge #159243, which faithfully captures the frequency
sweeping of RSAE, the tunneling damping of TAE, as well as the polarization
characteristics of KBAE and BAAE being consistent with former gyrokinetic
theory and simulation. With respect to the key progress contributed to the
community, MAS has the advantage of combining rich physics ingredients,
realistic global geometry and high computation efficiency together for plasma
stability analysis in linear regime.Comment: 40 pages, 21 figure
The serum soluble scavenger with 5 domains levels: A novel biomarker for individuals with heart failure
Background: We aimed to explore the relationship between the serum Soluble Scavenger with 5 Domains (SSC5D) levels and heart failure (HF).Methods and Results: We retrospectively enrolled 276 patients diagnosed with HF or normal during hospitalization in Shanghai General Hospital between September 2020 and December 2021. Previously published RNA sequencing data were re-analyzed to confirm the expression profile of SSC5D in failing and non-failing human and mouse heart tissues. Quantitative real-time polymerase chain reaction assay was used to quantify Ssc5d mRNA levels in murine heart tissue after myocardial infarction and transverse aortic constriction surgery. To understand the HF-induced secreted proteins profile, 1,755 secreted proteins were investigated using human dilated cardiomyopathy RNA-seq data, and the results indicated that SSC5D levels were significantly elevated in failing hearts compared to the non-failing. Using single-cell RNA sequencing data, we demonstrated that Ssc5d is predominantly expressed in cardiac fibroblasts. In a murine model of myocardial infarction or transverse aortic constriction, Ssc5d mRNA levels were markedly increased compared with those in the sham group. Similarly, serum SSC5D levels were considerably elevated in the HF group compared with the control group [15,789.35 (10,745.32–23,110.65) pg/mL, 95% CI (16,263.01–19,655.43) vs. 8,938.72 (6,154.97–12,778.81) pg/mL, 95% CI (9,337.50–11,142.93); p < 0.0001]. Moreover, serum SSC5D levels were positively correlated with N-terminal pro-B-type natriuretic peptide (R = 0.4, p = 7.9e-12) and inversely correlated with left ventricular ejection fraction (R = −0.46, p = 9.8e-16).Conclusion: We concluded that SSC5D was a specific response to HF. Serum SSC5D may function as a novel biomarker and therapeutic target for patients with HF
Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years
The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau. Results show three intervals with different orbital- and millennial-scale features superimposed on a stepwise long-term cooling trend. The interval of 1.74–1.54 million years ago is characterized by an insolation-dominated mode with strong ~20,000-year cyclicity and quasi-absent millennial-scale signal. The interval of 1.54–0.62 million years ago represents a transitional insolation-ice mode marked by ~20,000- and ~40,000-year cycles, with superimposed millennial-scale oscillations. The past 620,000 years are characterized by an ice-driven mode with 100,000-year cyclicity and less frequent millennial-scale variability. A pronounced transition occurred 620,000 years ago, as glacial cycles intensified. These new findings reveal how the interaction of low-latitude insolation and high-latitude ice-volume forcing shaped the evolution of the Tibetan Plateau climate.publishedVersio
Aloperine Suppresses Cancer Progression by Interacting with VPS4A to Inhibit Autophagosome-lysosome Fusion in NSCLC.
Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-β bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A
Molecular Cloning, Characterization and Expression Analysis of Two Members of the Pht1 Family of Phosphate Transporters in Glycine max
BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max), GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m) for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant
- …