58 research outputs found

    R\'{e}nyi Divergence Deep Mutual Learning

    Full text link
    This paper revisits Deep Mutual Learning (DML), a simple yet effective computing paradigm. We propose using R\'{e}nyi divergence instead of the KL divergence, which is more flexible and tunable, to improve vanilla DML. This modification is able to consistently improve performance over vanilla DML with limited additional complexity. The convergence properties of the proposed paradigm are analyzed theoretically, and Stochastic Gradient Descent with a constant learning rate is shown to converge with O(1)\mathcal{O}(1)-bias in the worst case scenario for nonconvex optimization tasks. That is, learning will reach nearby local optima but continue searching within a bounded scope, which may help mitigate overfitting. Finally, our extensive empirical results demonstrate the advantage of combining DML and R\'{e}nyi divergence, which further improves generalized models

    Low-Theta Electroencephalography Coherence Predicts Cigarette Craving in Nicotine Addiction

    Get PDF
    Addicts are often vulnerable to drug use in the presence of drug cues, which elicit significant drug cue reactivity. Mounting neuroimaging evidence suggests an association between functional magnetic resonance imaging connectivity networks and smoking cue reactivity; however, there is still little understanding of the electroencephalography (EEG) coherence basis of smoking cue reactivity. We therefore designed two independent experiments wherein nicotine-dependent smokers performed a smoking cue reactivity task during EEG recording. Experiment I showed that a low-theta EEG coherence network occurring 400–600 ms after onset during long-range (mainly between frontal and parieto-occipital) scalp regions, which was involved in smoking cue reactivity. Moreover, the average coherence of this network was significantly correlated with participants’ level of cigarette craving. In experiment II, we tested an independent group of smokers and demonstrated that the low-theta coherence network significantly predicted changes in individuals’ cigarette craving. Thus, the low-theta EEG coherence in smokers’ brains might be a biomarker of smoking cue reactivity and can predict addiction behavior

    All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region

    Get PDF
    Among the numerous endogenous biological molecules, information on lipids is highly coveted for understanding both aspects of developmental biology and research in fatal chronic diseases. Due to the pronounced absorption features of lipids in the extended near-infrared region (1650−1850 nm), visualisation and identification of lipids become possible using multi-spectral photoacoustic (optoacoustic) microscopy. However, the spectroscopic studies in this spectral region require lasers that can produce high pulse energies over a broad spectral bandwidth to efficiently excite strong photoacoustic signals. The most well-known laser sources capable of satisfying the multi-spectral photoacoustic microscopy requirements (tunability and pulse energy) are tunable nanosecond optical parametric oscillators. However, these lasers have an inherently large footprint, thus preventing their use in compact microscopy systems. Besides, they exhibit low-repetition rates. Here, we demonstrate a compact all-fibre, high pulse energy supercontinuum laser that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 μJ at a repetition rate of 100 kHz. Using the developed high-pulse energy source, we perform multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles, using six different excitation bands over the first overtone transition of C–H vibration bonds (1650−1850 nm)

    Stereotactic body radiation therapy as an effective and safe treatment for small hepatocellular carcinoma

    No full text
    Abstract Background To evaluate the efficacy and safety of stereotactic body radiation therapy (SBRT) in patients with small hepatocellular carcinoma(sHCC) who were ineligible for surgery or ablation therapies. Methods From March 2011 to December 2012, 28 cases with sHCC which were ineligible or refused surgical resection, transplantation or local ablation were treated with CyberKnife SBRT. Median size of tumors was 2.1 cm (range:1.1–3.0 cm), a dose of 10-15Gy per faction was given over 3–6 consecutive days, resulting in a total dose of 35-60Gy. Results The median follow-up period was 36 months, with the response rate of complete response (CR) in 17 cases, partial response (PR) in 8 cases, stable disease (SD) in 2 cases and progressive disease (PD) in one case. Overall response rate was 89.28%. Overall survival rates in 1, 2 and 3 years were 92.86, 85.71 and 78.57%, respectively. Local control rates in 1, 2 and 3 years were 96.43, 92.86 and 89.28%, respectively. No grade ≥ 3 hepatic toxicity was observed. Conclusion CyberKnife treatment was a safe and effective option for sHCC, which had shown good local control, high overall survival rates and low toxicity. CyberKnife SBRT could be served as an alternative treatment for patients with sHCC which is unsuitable for surgical treatment or local ablation

    The efficiency of aspheric intraocular lens according to biometric measurements

    No full text
    <div><p>Purpose</p><p>To analyze internal spherical aberration in pseudophakic eyes that underwent aspheric intraocular lens (IOL) implantation, and to investigate the relationships between biometric data and the effectiveness of aspheric IOL implantation.</p><p>Methods</p><p>This retrospective study included 40 eyes of 40 patients who underwent implantation of an IOL having a negative spherical aberration of -0.20 μm (CT ASPHINA 509M; Carl Zeiss Meditec Inc., Germany). The IOLMaster (version 5.0; Carl Zeiss AG, Germany) was used for preoperative biometric measurements (axial length, anterior chamber depth, central corneal power) and the measurement of postoperative anterior chamber depth. The spherical aberrations were measured preoperatively and 3 months postoperatively using the iTrace (Tracey Technologies, Houston, TX, USA) at a pupil diameter of 5.0 mm. We investigated the relationships between preoperative biometric data and postoperative internal spherical aberration, and compared biometric measurements between 2 subgroups stratified according to internal spherical aberration (spherical aberration ≤ -0.06 μm vs. spherical aberration > -0.06 μm).</p><p>Results</p><p>The mean postoperative internal spherical aberration was -0.087 ± 0.063 μm. Preoperative axial length and residual total spherical aberration showed statistically significant correlations with internal spherical aberration (<i>p</i> = 0.041, 0.002). Preoperative axial length, postoperative anterior chamber depth, IOL power, and residual spherical aberration showed significant differences between the 2 subgroups stratified according to internal spherical aberration (<i>p</i> = 0.020, 0.029, 0.048, 0.041 respectively).</p><p>Conclusion</p><p>The corrective effect of an aspheric IOL is influenced by preoperative axial length and postoperative anterior chamber depth. Not only the amount of negative spherical aberration on the IOL surface but also the preoperative axial length should be considered to optimize spherical aberration after aspheric IOL implantation.</p></div

    Spherical aberrations derived from optical bench testing.

    No full text
    <p>Spherical aberrations derived from optical bench testing.</p
    • …
    corecore