8 research outputs found

    Construction and Verification of a High-Precision Base Map for an Autonomous Vehicle Monitoring System

    No full text
    For autonomous driving, a control system that supports precise road maps is required to monitor the operation status of autonomous vehicles in the research stage. Such a system is also required for research related to automobile engineering, sensors, and artificial intelligence. The design of Google Maps and other map services is limited to the provision of map support at 20 levels of high-resolution precision. An ideal map should include information on roads, autonomous vehicles, and Internet of Things (IOT) facilities that support autonomous driving. The aim of this study was to design a map suitable for the control of autonomous vehicles in Gyeonggi Province in Korea. This work was part of the project “Building a Testbed for Pilot Operations of Autonomous Vehicles”. The map design scheme was redesigned for an autonomous vehicle control system based on the “Easy Map” developed by the National Geography Center, which provides free design schema. In addition, a vector-based precision map, including roads, sidewalks, and road markings, was produced to provide content suitable for 20 levels. A hybrid map that combines the vector layer of the road and an unmanned aerial vehicle (UAV) orthographic map was designed to facilitate vehicle identification. A control system that can display vehicle and sensor information based on the designed map was developed, and an environment to monitor the operation of autonomous vehicles was established. Finally, the high-precision map was verified through an accuracy test and driving data from autonomous vehicles

    High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids

    No full text
    Pressure-dependent structural and chemical changes of the zeolitic imid­azolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores

    Method for clearance of contaminated buildings in Korea research reactor 1 and 2

    No full text
    The objective of this study was the establishment of clearance method that can ensure radiological safety and reasonably minimize radioactive waste when demolishing contaminated buildings at KRR-1&2. By reviewing Korean and international laws related to decommissioning, the method for clearance of contaminated buildings presented in this study is to first decontaminate the building and then conduct a radiological safety assessment, such as measuring residual radioactivity, to determine whether the radiation dose criteria for clearance are satisfied. The measurement results meet the radiation dose criteria, the contaminated buildings are regarded as clearance and can be converted into the general buildings. The demolition of the cleared buildings is carried out using conventional demolition methods. The waste generated during the demolition is classified as general construction waste and is disposed of according to relevant laws. The proposed method significantly optimized the number of samples analyzed and reduced the time and cost associated with the decommissioning. The established method will be applied to the ongoing decommissioning of contaminated buildings at KRR-1&2, and its application will be verified by regulatory bodies. The study suggests that this method could be used for the decommissioning of contaminated buildings at other Korean nuclear facilities in the future.© 2017 Elsevier Inc. All rights reserved

    Pressure-Induced Metathesis Reaction To Sequester Cs

    No full text
    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag<sub>16</sub>Al<sub>16</sub>Si<sub>24</sub>O<sub>80</sub>·16H<sub>2</sub>O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag<sup>+</sup> by Cs<sup>+</sup> in the natrolite framework forming Cs<sub>16</sub>Al<sub>16</sub>Si<sub>24</sub>O<sub>80</sub>·16H<sub>2</sub>O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi<sub>2</sub>O<sub>6</sub>. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi<sub>2</sub>O<sub>6</sub>·H<sub>2</sub>O has been identified as a potential host material for nuclear waste remediation of anthropogenic <sup>137</sup>Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate

    Pressure-Dependent Structural and Chemical Changes in a Metal–Organic Framework with One-Dimensional Pore Structure

    No full text
    Pressure-dependent structural and chemical changes of the metal–organic framework (MOF) compound MIL-47­(V) have been investigated up to 3 GPa using different pore-penetrating liquids as pressure transmitting media (PTM). We find that at 0.3(1) GPa the terephthalic acid (TPA) template molecules located in the narrow channels of the as-synthesized MIL-47­(V) are selectively replaced by methanol molecules from a methanol–ethanol–water mixture and form a methanol inclusion complex. Further pressure increase leads to a gradual narrowing of the channels up to 1.9(1) GPa, where a second irreversible insertion of methanol molecules leads to more methanol molecules being inserted into the pores. After pressure release methanol molecules remain within the pores and can be removed only after heating to 400 °C. In contrast, when MIL-47­(V) is compressed in water, a reversible replacement of the TPA by H<sub>2</sub>O molecules takes place near 1 GPa. The observed structural and chemical changes observed in MIL-47­(V) demonstrate unique high pressure chemistry depending on the size and type of molecules present in the liquid PTM. This allows postsynthetic nonthermal pressure-induced removal and insertion of organic molecules in MOFs forming novel and stable phases at ambient conditions

    Enhanced Hydrogen-Storage Capacity and Structural Stability of an Organic Clathrate Structure with Fullerene (C<sub>60</sub>) Guests and Lithium Doping

    No full text
    An effective combination of host and guest molecules in a framework type of architecture can enhance the structural stability and physical properties of clathrate compounds. We report here that an organic clathrate compound consisting of a fullerene (C<sub>60</sub>) guest and a hydroquinone (HQ) host framework shows enhanced hydrogen-storage capacity and good structural stability under pressures and temperatures up to 10 GPa and 438 K, respectively. This combined structure is formed in the extended β-type HQ clathrate and admits 16 hydrogen molecules per cage, leading to a volumetric hydrogen uptake of 49.5 g L<sup>–1</sup> at 77 K and 8 MPa, a value enhanced by 130% compared to that associated with the β-type HQ clathrate. A close examination according to density functional theory calculations and grand canonical Monte Carlo simulations confirms the synergistic combination effect of the guest–host molecules tailored for enhanced hydrogen storage. Moreover, the model simulations demonstrate that the lithium-doped HQ clathrates with C<sub>60</sub> guests reveal exceptionally high hydrogen-storage capacities. These results provide a new playground for additional fundamental studies of the structure–property relationships and migration characteristics of small molecules in nanostructured materials
    corecore