70 research outputs found

    Analysis of the Preventive Medicine Undergraduate Curriculum in China: The West China School of Public Heath Experience: A Case Study

    Get PDF
    In China, the preventive medicine undergraduate professional training program is the major approach to training public health practitioners. The history of undergraduate education in public health/preventive medicine in China is reviewed utilizing the West China School of Public Health at Sichuan University as an example for analyzing this undergraduate major and its curriculum. Needed reforms in the Chinese undergraduate preventive medicine programs are presented, including review of the traditional preventive medicine course content, revision of its curriculum structure, the need to increase practical experience and to develop variety in teaching and assessment techniques, and systematic planning for curriculum reform. Current efforts at reform of the preventive medicine undergraduate program at Sichuan University’s West China School of Public Health are presented

    Jiedu Tongluo granules ameliorates post-stroke depression rat model via regulating NMDAR/BDNF signaling pathway

    Get PDF
    Post-stroke depression (PSD) is one of the most common stroke complications, which seriously affects stroke’s therapeutic effect and brings great pain for patients. The pathological mechanism of PSD has not been revealed. Jiedu Tongluo granules (JDTLG) is an effective traditional Chinese medicine for PSD treatment which is widely used in clinical treatment. JDTLG has a significant therapeutic effect against PSD, but the mechanism is still unclear. The PSD rat model was established by carotid artery embolization combined with chronic sleep deprivation followed by treating with JDTLG. Neurobehavioral and neurofunctional experiments were engaged in studying the neural function of rats. Histomorphology, proteomics, and western blotting researches were performed to investigate the potential molecular mechanisms related to JDTLG therapy. Oral treatment of JDTLG could significantly improve the symptoms of neurological deficit and depression symptoms of PSD rats. Proteomic analysis identified several processes that may involve the regulation of JDTLG on the PSD animal model, including energy metabolism, nervous system, and N-methyl-D-aspartate receptor (NMDAR)/brain-derived neurotrophic factor (BDNF) signal pathway. Our results showed that JDTLG could reduce glutamate (Glu) level and increase gamma-aminobutyric acid (GABA) level via regulating the NMDAR/BDNF pathway, which may play a vital role in the occurrence and development of PSD

    Mechanism study on the effect of adenine on the viability of Lactiplantibacillus plantarum LIP-1 powder via freeze-drying

    Get PDF
    Adenine acts as a growth promoter to promote the growth of the lactic acid bacteria (LAB), but the effect on the viability of freeze-dried strains has rarely been studied. In this study, adding 0.01 g/L of adenine to medium increased the growth and freeze-dried viability of Lactiplantibacillus plantarum LIP-1. Further research has found that L. plantarum LIP-1 synthesized large amounts of adenosine triphosphate (ATP) by metabolizing adenine. Elevated intracellular ATP content caused feedback inhibition on the conversion pathway of pyruvate to lactic acid, while promoting the conversion of pyruvate to acetyl coenzyme A (acetyl-CoA). After a large accumulation of acetyl-CoA in the cells, there was sufficient substrate for the synthesis of cell membrane fatty acids. Elevated intracellular ATP content also activated the acyl-CoA thioesterase activity to catalyse the conversion of saturated fatty acids to unsaturated fatty acids, thereby improving the integrity of the cell membrane and reducing damage to the cell membrane during the freeze-drying process. Additionally, a reduction in the amount of pyruvate converted into lactate prevented the decrease in intracellular pH (pHin), which alleviated the degree of acid stress on the strain, resulting in less DNA damage and improved DNA stability. It is concluded that L. plantarum LIP-1 reduced the degree of cell membrane and DNA damage by metabolizing adenine and improved the freeze-dried viability of the strain

    Pain in Huntington’s disease and its potential mechanisms

    Get PDF
    Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington’s disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future

    Refining soil organic carbon stock estimates for China’s palustrine wetlands

    Get PDF
    Palustrine wetlands include all bogs, fens, swamps and marshes that are non-saline and which are not lakes or rivers. They therefore form a highly important group of wetlands which hold large carbon stocks. If these wetlands are not protected properly they could become a net carbon source in the future. Compilation of spatially explicit wetland databases, national inventory data and in-situ measurement of soil organic carbon (SOC) could be useful to better quantify SOC and formulate long-term strategies for mitigating global climate change. In this study, a synergistic mapping approach was used to create a hybrid map for palustrine wetlands for China and to estimate their SOC content. Total SOC storage in palustrine wetlands was estimated to be 4.3±1.4 Pg C, with a SOC density of 31.17 (±10.55) kg C m-2 in the upper 1 m of the soil layer. This carbon stock is concentrated in Northeast China (49%) and the Qinghai-Tibet Plateau (41%). Given the large pool of carbon stored in palustrine wetlands compared to other soil types, we suggest that urgent monitoring programmes on SOC should be established in regions with very few datasets, but where palustrine wetlands appear to be common such as the Tibet region and Northwest China

    Genome Characterization of the Oleaginous Fungus Mortierella alpina

    Get PDF
    Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids

    Loss Simulation Analysis and Optimization of U-Groove Leaky Coaxial Cable

    No full text
    Leakage coaxial cable is a kind of coaxial cable with various slot structures on the outer conductor of the cable. It can transmit signal and transmit or receive signal and has dual functions of signal transmission line and antenna. Leakage cable has the advantages of strong environmental adaptability, uniform signal coverage, and less attenuation. It is not only widely used in closed or semiclosed space with high signal reception quality, such as tunnels, subway, underground parking lot, and elevators but also can realize security and theft-proof monitoring and protection in some areas, such as oil wells, mining fields and natural resource protection areas, military fortresses, museums, airports, banks, and schools. This paper introduces the classification and electrical parameters of leaky coaxial cables. On the basis of U-groove leaky coaxial cables, the relationship between the parameters of groove holes in U-groove and the loss of leaky coaxial cables is simulated and analyzed by HFSS software. The improved method of U-groove structure is obtained, and the curved hook-groove leaky coaxial cables are designed according to this method. The simulation results show that the coupling loss of the cable is lower than that of the U-groove leakage cable, and the transmission loss is still within the national standard. It lays a theoretical foundation for the design and development of leaky coaxial cable with low coupling loss

    Analysis of MicroRNA Expression Profiling Involved in MC-LR-Induced Cytotoxicity by High-Throughput Sequencing

    No full text
    In recent years, microRNAs (miRNAs) in toxicology have attracted great attention. However, the underlying mechanism of miRNAs in the cytotoxicity of microcystin-LR (MC-LR) is lacking. The objective of this study is to analyze miRNA profiling in HepG2 cells after 24 h of MC-LR-exposure to affirm whether and how miRNAs were involved in the cytotoxicity of MC-LR. The results showed that totally 21 and 37 miRNAs were found to be significantly altered in the MC-LR treated cells at concentrations of 10 and 50 μM, respectively, when compared to the control cells. In these two groups, 37,566 and 39,174 target genes were predicted, respectively. The further analysis showed that MC-LR-exposure promoted the expressions of has-miR-149-3p, has-miR-449c-5p, and has-miR-454-3p while suppressed the expressions of has-miR-4286, has-miR-500a-3p, has-miR-500a-5p, and has-miR-500b-5p in MC-LR-treated groups when compared to the control group. Moreover, the result of qPCR confirmed the above result, suggesting that these miRNAs may be involved in MC-LR-hepatotoxicity and they may play an important role in the hepatitis and liver cancer caused by MC-LR. The target genes for differentially expressed miRNAs in MC-LR treatment groups were significantly enriched to totally 23 classes of GO, in which three were significantly enriched in both 10 and 50 μM MC-LR groups. Moreover, the results of KEGG pathway analysis showed that MC-LR-exposure altered some important signaling pathways such as MAPK, biosynthesis of secondary metabolites, and pyrimidine and purine metabolism, which were possibly negatively regulated by the corresponding miRNAs and might play important role in MC-LR-mediated cytotoxicity in HepG2 cells

    Reducing human nitrogen use for food production

    No full text
    International audienceReactive nitrogen (N) is created in order to sustain food production, but only a small fraction of this N ends up being consumed as food, the rest being lost to the environment. We calculated that the total N input (TN) of global food production was 171 Tg N yr−1 in 2000. The production of animal products accounted for over 50% of the TN, against 17% for global calories production. Under current TN per unit of food production and assuming no change in agricultural practices and waste-to-food ratios, we estimate that an additional TN of 100 Tg N yr−1 will be needed by 2030 for a baseline scenario that would meet hunger alleviation targets for over 9 billion people. Increased animal production will have the largest impact on increasing TN, which calls for new food production systems with better N-recycling, such as cooperation between crop and livestock producing farms. Increased N-use efficiency, healthier diet and decreased food waste could mitigate this increase and even reduce TN in 2030 by 8% relative to the 2000 level. Achieving a worldwide reduction of TN is a major challenge that requires sustained actions to improve nitrogen management practices and reduce nitrogen losses into the environment
    • …
    corecore