31 research outputs found

    S.8.1 An immunochip-based interrogation of scleroderma susceptibility variants

    Get PDF
    Introduction. Understanding the genetic architecture of scleroderma (SSc) susceptibility is vital both in gene discovery and in determining the influence of previously identified susceptibility variants. It is particularly important in understanding disease mechanism in a disease with few therapies and great morbidity and mortality. Methods. We selected 557 cases from the Australian Scleroderma Cohort Study (ASCS), for genotyping with the Immunochip, a custom Illumina Infinium genotyping array containing 196 524 rare and common variants shown to be important in a wide variety of autoimmune disorders. A total of 4537 controls were taken from the 1958 British Birth cohort. Genotype data were analysed with PLINK. Samples and SNPs with low call rates were excluded, as were SNPs in Hardy-Weinberg disequilibrium or with less than two occurrences of the minor allele. Eigenstrat was used to analyse population structure. The final data set consisted of 505 cases, 4491 controls and 146 867 SNPs. Allelic association analyses were conducted using Fisher's exact test. Genotype clusters were manually examined for all associations of P < 10−5 since calling is difficult for some rare variants. Results. Significant and suggestive associations were detected at seven loci. Several of these have been previously implicated in scleroderma susceptibility (HLA-DRB1 and STAT4) and several are novel associations, including SNPs near PXK (P = 4.4 × 10−6) and CFDP1(P = 2.6 × 10−6). The strongest associations were with SNPs in the Class II region of the MHC. One of the most strongly associated SNPs [rs4639334; P = 1.6 × 10−8; odds ratio (OR) = 1.8] is in linkage disequilibrium (r2 = 0.46) with the Class II allele HLA-DRB1*11:01. This allele has been associated with SSc. Another strongly associated SNP is rs2857130 (P = 1.6 × 10−8; OR = 0.67), which lies in the promoter region of HLA-DRB1, but is not in LD with any classical MHC alleles. Outside the MHC, there were six regions of association with P < 10−5,including the confirmed SSc locus at STAT4. Several SNPs implicate a locus at PXK, which has been previously associated with SLE but not with SSc. The remaining associations are novel for both SSc and SLE and require replication. Of particular interest is a rare variant located within a non-coding RNA on chromosome 6q21 which was ∼20 times more frequent in cases than controls. We are currently dissecting the potential biological implications of this locus. Conclusions. This pilot study has confirmed previously reported SSc associations, revealed further genetic overlap between SSc and SLE, and identified putative novel SSc susceptibility loci including a rare allele with major effect siz

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Investigation of arthritic joint destruction by a novel fibroblast-based model

    No full text
    The key pathologic mechanism in rheumatoid arthritis (RA) is the destruction of cartilage by fibroblasts. In a severe combined immunodeficient (SCID) mouse model, this process can be modulated by gene transfer using invasive LS48 fibroblasts. This study aims to investigate the effect of interleukins (IL) -11 and -12 on cartilage destruction when transferred into LS48, and of IL-15 when transfected into non-invasive 3T3 cells; to compare three transduction systems (a lentiviral vector system, a retroviral vector system, and a particle-mediated gene transfer); and to establish an in vitro cartilage destruction system based on LS48 cells. Transduced fibroblasts were injected into SCID mice knee joints, and disease progression assessed microscopically. Distinctive morphologic pattern revealed invasion of fibroblasts into the articular cartilage by transfected, as well as non-transfected, LS48 cells. IL-12 and IL-15 did not alter swelling or cartilage destruction. Animals treated with IL-11-transfected cells showed reduced cartilage damage but no changes in swelling. Efficacy of gene transfer to establish transfected fibroblasts was shown to be >85% for lentiviral transfer, compared to <10% for retroviral transfer and gene gun. Furthermore, cells were co-incubated with porcine cartilage. Transduction of IL-11 led to a reduction of apoptosis in chondrocytes. These findings suggest that cartilage destruction by invasive fibroblasts can be modulated by gene transfer. Lentiviral vector systems offer the most effective approach for gene transduction. In vitro fibroblast/cartilage co-cultures present a convenient system for the assessment of novel therapeutic strategies toward reduction of articular destruction

    DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts

    Full text link
    In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction

    Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS

    No full text
    Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti-and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro-and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties. J. Leukoc. Biol. 87: 1103-1114; 2010

    PU.1 controls fibroblast polarization and tissue fibrosis

    No full text
    Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs

    Targeting the epigenetic modifications of synovial cells

    No full text
    Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial tissues of joints. Like in other autoimmune-related disorders, both the etiology as well as the pathogenesis of RA has not yet been completely unravelled. It is generally accepted, though, that autoimmune disorders develop through a combination of the individual genetic susceptibility, environmental factors, and dysregulated immune responses. Genetic predisposition has been described in RA, in particular as “shared epitope”, a distinct sequence of amino acids within the antigen presenting peptide groove of the major histocompatibility complex (MHC). Imbalanced immunity is reflected by the production of autoantibodies and the accumulation of reactive helper T cells within the rheumatoid synovium. In addition, environmental factors have been postulated as disease modulating agents, including smoking, nutrition and infectious agents. So far, these factors have been studied almost exclusively as separate agents. However, the way genes are transcribed can be affected by environment, nutrition, and ageing – without changes in the nucleotide sequence of the underlying DNA. These patterns of alterations in the gene expression profiles are called epigenetics. The term epigenetics is used to refer to molecular processes that regulate gene expression patterns, however without changing the DNA nucleotide sequence. These epigenetic changes comprise the postsynthetical methylation of DNA and posttranscriptional modifications of histones, including methylation, phosphorylation, ubiquitination, sumoylation, biotinlyation and, most importantly, deacetylation and acetylation. With respect to the complex pathogenesis of rheumatic diseases, the epigenome is an emerging concept that integrates different etiologies and, thus, offers the opportunity for novel therapeutic strategies. Based on the fact that current therapies have not resulted in an ACR 70 above 60% and have never been targeting the activated synovial fibroblast, novel therapeutic strategies should target the epigenetic pathways of synovial activation in RA
    corecore