350 research outputs found

    Random wave loads on a long detached breakwater considering diffraction

    Get PDF
    Battjes (1982) found the loads of short-crested random waves on a long structure decrease with the structure length and also with the obliqueness of wave incidence. These decreases come from the spatial phase difference along the structure. Lee et al. (2010) found that obliquely incident random waves in a nearshore area become directionally asymmetric due to refraction. They also found the asymmetry becomes more significant in shallower waters. Recently, Jung et al. (2011) studied random wave loads on a long structure considering diffraction and directional asymmetry. In this study, we further study random wave loads on a detached breakwater considering diffraction of waves which propagate at both ends of the breakwater. We also consider directional asymmetry. The structure may be placed along the bottom contours in order to protect on-shore incoming waves. In that case, refraction induced random waves may become asymmetric, i.e., on-shore components are more dominant than along-shore ones. Therefore, directional obliqueness on the structure becomes less and thus the wave loads decrease in less degree than the symmetric waves. When waves are obliquely incident on a long structure, the diffract ing waves give forces on the lee side of the structure. The diffracting wave has a spatial phase variation along the lee side which is different from that the obliquely incident wave has on the front side. Thus, the wave loads decrease with the existence of diffract ing waves and also the phase difference between the incident and diffracting waves

    Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette-Taylor Flow

    Get PDF
    Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (???200 cP at 25 ??C) than that of those from Hummers' method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly

    High performance n-MOSFETs with novel source/drain on selectively grown Ge on Si for monolithic integration

    Get PDF
    We demonstrate high performance Ge n-MOSFETs with novel raised source/drain fabricated on high quality single crystal Ge selectively grown heteroepitaxially on Si using Multiple Hydrogen Anealing for Heteroepitaxy(MHAH) technique. Until now low source/drain series resistance in Ge n-MOSFETs has been a highly challenging problem. Source and drain are formed by implant-free, in-situ doping process for the purpose of very low series resistance and abrupt and shallow n+/p junctions. The novel n-MOSFETs show among the highest electron mobility reported on (100) Ge to-date. Furthermore, these devices provide an excellent Ion/Ioff ratio(4× 103) with very high Ion of 3.23μA/μm. These results show promise towards monolithic integration of Ge MOSFETs with Si CMOS VLSI platform. © 2009 IEEE

    High-efficiency p-i-n photodetectors on selective-area-grown ge for monolithic integration

    Get PDF
    We demonstrate normal incidence p-i-n photodiodes on selective-area-grown Ge using multiple hydrogen annealing for heteroepitaxy for the purpose of monolithic integration. An enhanced efficiency in the near-infrared regime and the absorption edge shifting to longer wavelength is achieved due to 0.14% residual tensile strain in the selective-area-grown Ge. The responsivities at 1.48, 1.525, and 1.55 μ are 0.8, 0.7, and 0.64 A/W, respectively, without an optimal antireflection coating. These results are promising toward monolithically integrated on-chip optical links and in telecommunications. © 2009 IEEE

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
    corecore