350 research outputs found
Recommended from our members
Scaffold Fabrication for Drug Delivery System Using Layered Manufacturing Methods
To fabricate functional shape of drug delivery system (DDS), various processes are used. In
this research, based on layered manufacturing, two different processes of 1) replication and 2)
direct deposition were used to fabricate scaffold type implantable DDS. For replication process,
hot embossing process for fabrication of patterned layers and bonding for construction of three-dimensional shape were used. As a direct deposition process, nano composite deposition system
(NCDS) was used. Various scaffolds were fabricated with different filament size, pore size, and
shape. It is observed that the scaffold type of implantable DDS is more stable than non-porous
DDS through the in vivo test.Mechanical Engineerin
Random wave loads on a long detached breakwater considering diffraction
Battjes (1982) found the loads of short-crested random waves on a long structure decrease with the structure length and also with the obliqueness of wave incidence. These decreases come from the spatial phase difference along the structure. Lee et al. (2010) found that obliquely incident random waves in a nearshore area become directionally asymmetric due to refraction. They also found the asymmetry becomes more significant in shallower waters. Recently, Jung et al. (2011) studied random wave loads on a long structure considering diffraction and directional asymmetry. In this study, we further study random wave loads on a detached breakwater considering diffraction of waves which propagate at both ends of the breakwater. We also consider directional asymmetry. The structure may be placed along the bottom contours in order to protect on-shore incoming waves. In that case, refraction induced random waves may become asymmetric, i.e., on-shore components are more dominant than along-shore ones. Therefore, directional obliqueness on the structure becomes less and thus the wave loads decrease in less degree than the symmetric waves. When waves are obliquely incident on a long structure, the diffract ing waves give forces on the lee side of the structure. The diffracting wave has a spatial phase variation along the lee side which is different from that the obliquely incident wave has on the front side. Thus, the wave loads decrease with the existence of diffract ing waves and also the phase difference between the incident and diffracting waves
Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette-Taylor Flow
Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (???200 cP at 25 ??C) than that of those from Hummers' method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly
High performance n-MOSFETs with novel source/drain on selectively grown Ge on Si for monolithic integration
We demonstrate high performance Ge n-MOSFETs with novel raised source/drain fabricated on high quality single crystal Ge selectively grown heteroepitaxially on Si using Multiple Hydrogen Anealing for Heteroepitaxy(MHAH) technique. Until now low source/drain series resistance in Ge n-MOSFETs has been a highly challenging problem. Source and drain are formed by implant-free, in-situ doping process for the purpose of very low series resistance and abrupt and shallow n+/p junctions. The novel n-MOSFETs show among the highest electron mobility reported on (100) Ge to-date. Furthermore, these devices provide an excellent Ion/Ioff ratio(4× 103) with very high Ion of 3.23μA/μm. These results show promise towards monolithic integration of Ge MOSFETs with Si CMOS VLSI platform. © 2009 IEEE
High-efficiency p-i-n photodetectors on selective-area-grown ge for monolithic integration
We demonstrate normal incidence p-i-n photodiodes on selective-area-grown Ge using multiple hydrogen annealing for heteroepitaxy for the purpose of monolithic integration. An enhanced efficiency in the near-infrared regime and the absorption edge shifting to longer wavelength is achieved due to 0.14% residual tensile strain in the selective-area-grown Ge. The responsivities at 1.48, 1.525, and 1.55 μ are 0.8, 0.7, and 0.64 A/W, respectively, without an optimal antireflection coating. These results are promising toward monolithically integrated on-chip optical links and in telecommunications. © 2009 IEEE
Recommended from our members
Momentum dependent dxz/yz band splitting in LaFeAsO
The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the Γ and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the Γ and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the Γ point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors
Recommended from our members
Inductively Coupled Plasma Etching in ICl- and IBr-Based Chemistries: Part I. GaAs, GaSb and AlGaAs
High density plasma etching of GaAs, GaSb and AIGaAs was performed in IC1/Ar and lBr/Ar chemistries using an Inductively Coupled Plasma (ICP) source. GaSb and AlGaAs showed maxima in their etch rates for both plasma chemistries as a function of interhalogen percentage, while GaAs showed increased etch rates with plasma composition in both chemistries. Etch rates of all materials increased substantially with increasing rf chuck power, but rapidly decreased with chamber pressure. Selectivities > 10 for GaAs and GaSb over AlGaAs were obtained in both chemistries. The etched surfaces of GaAs showed smooth morphology, which were somewhat better with IC1/Ar than with IBr/& discharge. Auger Electron Spectroscopy analysis revealed equi-rate of removal of group III and V components or the corresponding etch products, maintaining the stoichiometry of the etched surface
Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field
It has been well established that spatially extended, bistable systems that
are driven by an oscillating field exhibit a nonequilibrium dynamic phase
transition (DPT). The DPT occurs when the field frequency is on the order of
the inverse of an intrinsic lifetime associated with the transitions between
the two stable states in a static field of the same magnitude as the amplitude
of the oscillating field. The DPT is continuous and belongs to the same
universality class as the equilibrium phase transition of the Ising model in
zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et
al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed
that the DPT becomes discontinuous at temperatures below a tricritical point
[M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on
observations in dynamic Monte Carlo simulations of a multipeaked probability
density for the dynamic order parameter and negative values of the fourth-order
cumulant ratio. Both phenomena can be characteristic of discontinuous phase
transitions. Here we use classical nucleation theory for the decay of
metastable phases, together with data from large-scale dynamic Monte Carlo
simulations of a two-dimensional kinetic Ising ferromagnet, to show that these
observations in this case are merely finite-size effects. For sufficiently
small systems and low temperatures, the continuous DPT is replaced, not by a
discontinuous phase transition, but by a crossover to stochastic resonance. In
the infinite-system limit the stochastic-resonance regime vanishes, and the
continuous DPT should persist for all nonzero temperatures
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
- …