1,634 research outputs found

    Improving the Cathodic Biofilm Growth Capabilities of Kyrpidia spormannii EA-1 by Undirected Mutagenesis

    Get PDF
    The biotechnological usage of carbon dioxide has become a relevant aim for future processes. Microbial electrosynthesis is a rather new technique to energize biological CO2_{2} fixation with the advantage to establish a continuous process based on a cathodic biofilm that is supplied with renewable electrical energy as electron and energy source. In this study, the recently characterized cathodic biofilm forming microorganism Kyrpidia spormannii strain EA-1 was used in an adaptive laboratory evolution experiment to enhance its cathodic biofilm growth capabilities. At the end of the experiment, the adapted cathodic population exhibited an up to fourfold higher biofilm accumulation rate, as well as faster substratum coverage and a more uniform biofilm morphology compared to the progenitor strain. Genomic variant analysis revealed a genomically heterogeneous population with genetic variations occurring to various extends throughout the community. Via the conducted analysis we identified possible targets for future genetic engineering with the aim to further optimize cathodic growth. Moreover, the results assist in elucidating the underlying processes that enable cathodic biofilm formation

    Crystal Structure of an Anti-Ang2 CrossFab Demonstrates Complete Structural and Functional Integrity of the Variable Domain.

    Get PDF
    Bispecific antibodies are considered as a promising class of future biotherapeutic molecules. They comprise binding specificities for two different antigens, which may provide additive or synergistic modes of action. There is a wide variety of design alternatives for such bispecific antibodies, including the "CrossMab" format. CrossMabs contain a domain crossover in one of the antigen-binding (Fab) parts, together with the "knobs-and-holes" approach, to enforce the correct assembly of four different polypeptide chains into an IgG-like bispecific antibody. We determined the crystal structure of a hAng-2-binding Fab in its crossed and uncrossed form and show that CH1-CL-domain crossover does not induce significant perturbations of the structure and has no detectable influence on target binding

    Bioplastikproduktion mithilfe eines extremophilen kathodischen Biofilms

    Get PDF
    As the atmospheric CO2 concentrations are increasing, its usage as biotechnological substrate becomes a focus area of applied scientists. As a rather new technique to energize the process of CO2 fixation, microbial electrosynthesis offers the advantage to establish continuous processes based on a cathodic biofilm that is supplied with electrical energy provided by renewable resources. Here we present the cathodic biofilm growth of Kyrpidia spormannii, a recently isolated thermophilic organism that is naturally capable of producing the biodegradable biopolymer polyhydroxybutyrate (PHB)

    Quantitative and qualitative estimation of atherosclerotic plaque burden in vivo at 7T MRI using Gadospin F in comparison to en face preparation evaluated in ApoE KO

    Get PDF
    Background The aim of the study was to quantify atherosclerotic plaque burden by volumetric assessment and T1 relaxivity measurement at 7T MRI using Gadospin F (GDF) in comparison to en face based measurements. Methods and results 9-weeks old ApoE-/- (n = 5 for each group) and wildtype mice (n = 5) were set on high fat diet (HFD). Progression group received MRI at 9, 13, 17 and 21 weeks after HFD initiation. Regression group was reswitched to chow diet (CD) after 13 weeks HFD and monitored with MRI for 12 weeks. MRI was performed before and two hours after iv injection of GDF (100 μmol/kg) at 7T (Clinscan, Bruker) acquiring a 3D inversion recovery gradient echo sequence and T1 Mapping using Saturation Recovery sequences. Subsequently, aortas were prepared for en face analysis using confocal microscopy. Total plaque volume (TPV) and T1 relaxivity were estimated using ImageJ (V. 1.44p, NIH, USA). 2D and 3D en face analysis showed a strong and exponential increase of plaque burden over time, while plaque burden in regression group was less pronounced. Correspondent in vivo MRI measurements revealed a more linear increase of TPV and T1 relaxivity for regression group. A significant correlation was observed between 2D and 3D en face analysis (r = 0.79; p<0.001) as well as between 2D / 3D en face analysis and MRI (r = 0.79; p<0.001; r = 0.85; p<0.001) and delta R1 (r = 0.79; p<0.001; r = 0.69; p<0.01). Conclusion GDF-enhanced in vivo MRI is a powerful non-invasive imaging technique in mice allowing for reliable estimation of atherosclerotic plaque burden, monitoring of disease progression and regression in preclinical studies

    Lepton Mass Hierarchy and Neutrino Mixing

    Full text link
    We speculate that the mass spectrum of three neutrinos might have a normal hierarchy as that of three charged leptons or that of three up-type (or down-type) quarks. In this spirit, we propose a novel parametrization of the 3×33\times 3 lepton flavor mixing matrix. Its mixing angles θl\theta_l and θν\theta_\nu can be related to the mass ratios me/mμm_e/m_\mu and m1/m2m_1/m_2 in a specific texture of lepton mass matrices with vanishing (1,1) elements: tanθl=me/mμ\tan\theta_l = \sqrt{m_e/m_\mu} and tanθν=m1/m2\tan\theta_\nu = \sqrt{m_1/m_2}. The latter relation, together with solar and atmospheric neutrino oscillation data, predicts 0.0030 eV m1\lesssim m_1 \lesssim 0.0073 eV, 0.009 eV m2\lesssim m_2 \lesssim 0.012 eV and 0.042 eV m3\lesssim m_3 \lesssim 0.058 eV. The smallest neutrino mixing angle is found to be θ13θl/23\theta_{13} \approx \theta_l/\sqrt{2} \approx 3^\circ, which is experimentally accessible in the near future.Comment: RevTex 10 pages, 2 figure

    Quantifying Concentration Polarization – Raman Microspectroscopy for In-Situ Measurement in a Flat Sheet Cross-flow Nanofiltration Membrane Unit

    Get PDF
    In this work, the concentration polarization layer (CPL) of sulphate in a cross-flow membrane system was measured in-situ using Raman microspectroscopy (RM). The focus of this work is to introduce RM as a new tool for the study of mass transfer inside membrane channels in reverse osmosis (RO) and nanofiltration (NF) generally. Specifically, this work demonstrates how to use RM for locally resolved measurement of sulphate concentration in a cross-flow flat-sheet NF membrane flow cell with channel dimensions similar to commonly applied RO/NF spiral wound modules (channel height about 0.7 mm). Concentration polarization profiles of an aqueous magnesium sulphate solution of 10 gsulphate·L−1 were obtained at operating pressure of 10 bar and cross-flow velocities of 0.04 and 0.2 m·s−1. The ability of RM to provide accurate concentration profiles is discussed thoroughly. Optical effects due to refraction present one of the main challenges of the method by substantially affecting signal intensity and depth resolution. The concentration profiles obtained in this concept study are consistent with theory and show reduced CPL thickness and membrane wall concentration with increasing cross-flow velocity. The severity of CP was quantified to reach almost double the bulk concentration at the lower velocity
    corecore