2,885 research outputs found
Encoding of physics concepts: Concreteness and presentation modality reflected by human brain dynamics
Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class. © 2012 Lai et al
Staphylococcus aureus enterotoxin b down-regulates the expression of transforming growth factor-beta (TGF-β) signaling transducers in human glioblastoma
Background: It has been revealed that Staphylococcus aureus enterotoxin B (SEB) may feature anti-cancer and anti-metastatic advantages due to its ability to modify cell immunity processes and signaling pathways. Glioblastoma is one of the most aggressive human cancers; it has a high mortality nature, which makes it an attractive area for the development of novel therapies. Objectives: We examined whether the SEB could exert its growth inhibitory effects on glioblastoma cells partially through the manipulation of a key tumor growth factor termed transforming growth factor-beta (TGF-β). Materials and Methods: A human primary glioblastoma cell line, U87, was treated with different concentrations of SEB. The cell quantity was measured by the MTT assay at different exposure times. For molecular assessments, total ribonucleic acid (RNA) was extracted from either non-treated or SEB-treated cells. Subsequently, the gene expression of TGF-β transducers, smad2/3, at the messenger RNA (mRNA) level, was analyzed via a quantitative real-time polymerase chain reaction (qPCR) using the SYBR Green method. Significant differences between cell viability and gene expression levels were determined (Prism 5.0 software) using a one-way analysis of variance (ANOVA) test. Results: We reported that SEB could effectively down-regulate smad2/3 expression in glioblastoma cells at concentrations as quantity as 1 µg/mL and 2 µg/mL (P < 0.05 and P < 0.01, respectively). The SEB concentrations effective at regulating smad2/3 expression were correlated with those used to inhibit the proliferation of glioblastoma cells. Our results also showed that SEB was able to decrease smad2/3 expression at the mRNA level in a concentration- and time-dependent manner. Conclusions: We suggested that SEB could represent an agent that can significantly decrease smad2/3 expression in glioblastoma cells, leading to moderate TGF-β growth signaling and the reduction of tumor cell proliferation. © 2016, Ahvaz Jundishapur University of Medical Sciences
Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds
Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and
experimentally realized in a quantum wells based on binary semiconductor
HgTe[1-3]. QSH state and topological insulators are the new states of quantum
matter interesting both for fundamental condensed matter physics and material
science[1-11]. Many of Heusler compounds with C1b structure are ternary
semiconductors which are structurally and electronically related to the binary
semiconductors. The diversity of Heusler materials opens wide possibilities for
tuning the band gap and setting the desired band inversion by choosing
compounds with appropriate hybridization strength (by lattice parameter) and
the magnitude of spin-orbit coupling (by the atomic charge). Based on the
first-principle calculations we demonstrate that around fifty Heusler compounds
show the band inversion similar to HgTe. The topological state in these
zero-gap semiconductors can be created by applying strain or by designing an
appropriate quantum well structure, similar to the case of HgTe. Many of these
ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the
rare earth element Ln which can realize additional properties ranging from
superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and
heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new
research directions in realizing the quantized anomalous Hall effect and
topological superconductors.Comment: 20 pages, 5 figure
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
An experimental and theoretical study of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amides
The mechanism of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amide was studied by quantum chemical calculations. The transition states of eight molecules were fully optimized at the ab initio HF/3-21G and density functional B3LYP/3-21G levels with Gaussian 98. The activation energies were calculated at the B3LYP/6-31+G(3df,2p)//B3LYP/3-21G level. We found the theoretical evaluation to be consistent with the experimental data. At the best case, an enantiomeric excess of up to 95% for (R)-2-scyclohexen-1-ol was achieved with (−)-N, N-diisopinocampheyl lithium amide
Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis
Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.
Interleukin-1 polymorphisms associated with increased risk of gastric cancer
Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA-protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do no
Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al
Somersault of Paramecium in extremely confined environments
We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces
Infant Cognitive Scores Prediction With Multi-stream Attention-based Temporal Path Signature Features
There is stunning rapid development of human brains in the first year of life. Some studies have revealed the tight connection between cognition skills and cortical morphology in this period. Nonetheless, it is still a great challenge to predict cognitive scores using brain morphological features, given issues like small sample size and missing data in longitudinal studies. In this work, for the first time, we introduce the path signature method to explore hidden analytical and geometric properties of longitudinal cortical morphology features. A novel BrainPSNet is proposed with a differentiable temporal path signature layer to produce informative representations of different time points and various temporal granules. Further, a two-stream neural network is included to combine groups of raw features and path signature features for predicting the cognitive score. More importantly, considering different influences of each brain region on the cognitive function, we design a learning-based attention mask generator to automatically weight regions correspondingly. Experiments are conducted on an in-house longitudinal dataset. By comparing with several recent algorithms, the proposed method achieves the state-of-the-art performance. The relationship between morphological features and cognitive abilities is also analyzed
- …