102 research outputs found

    Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Get PDF
    The testicular yolk sac tumor (TYST) is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST

    Jinhong decoction protects sepsis-associated acute lung injury by reducing intestinal bacterial translocation and improving gut microbial homeostasis

    Get PDF
    Background: Currently no specific treatments are available for sepsis and the associated syndromes including acute lung injury (ALI). Jinhong Decoction (JHD) is a traditional Chinese prescription, and it has been applied clinically as an efficient and safe treatment for sepsis, but the underlying mechanism remains unknown. The aim of the study was to explore the potential mechanisms of JHD ameliorating sepsis and concurrent ALI.Methods: The cecum ligation puncture (CLP)- induced murine sepsis model was established for determining the efficacy of JHD protecting CLP and ALI. The role of gut microbiota involved in the efficacy of JHD was evaluated by 16S rRNA sequencing and fecal microbiota transplantation (FMT). Translocation of intestinal Escherichia coli (E. coli) to lungs after CLP was verified by qPCR and in vivo-imaging. Intestinal permeability was analyzed by detecting FITC-dextran leakness. Junction proteins were evaluated by Western blotting and immunofluorescence.Results: JHD treatment remarkably increased survival rate of septic mice and alleviated sepsis-associated lung inflammation and injury. FMT suggested that the protective role for JHD was mediated through the regulation of gut microbiota. We further revealed that JHD administration partially restored the diversity and configuration of microbiome that was distorted by CLP operation. Of interest, the intestinal bacteria, E. coli particularly, was found to translocate into the lungs upon CLP via disrupting the intestinal mucosal barrier, leading to the inflammatory response and tissue damage in lungs. JHD impeded the migration and hence lung accumulation of intestinal E. coli, and thereby prevented severe ALI associated with sepsis. This effect is causatively related with the ability of JHD to restore intestinal barrier by up-regulating tight junctions.Conclusion: Our study unveils a mechanism whereby the migration of gut bacteria leads to sepsis-associated ALI, and we demonstrate the potential of JHD as an effective strategy to block this bacterial migration for treating sepsis and the associated immunopathology in the distal organs

    Alteration of gastric microbiota and transcriptome in a rat with gastric intestinal metaplasia induced by deoxycholic acid

    Get PDF
    ObjectiveBile reflux plays a key role in the development of gastric intestinal metaplasia (GIM), an independent risk factor of gastric cancer. Here, we aimed to explore the biological mechanism of GIM induced by bile reflux in a rat model.MethodsRats were treated with 2% sodium salicylate and allowed to freely drink 20 mmol/L sodium deoxycholate for 12 weeks, and GIM was confirmed by histopathological analysis. Gastric microbiota was profiled according to the 16S rDNA V3–V4 region, gastric transcriptome was sequenced, and serum bile acids (BAs) were analyzed by targeted metabolomics. Spearman's correlation analysis was used in constructing the network among gastric microbiota, serum BAs, and gene profiles. Real-time polymerase chain reaction (RT-PCR) measured the expression levels of nine genes in the gastric transcriptome.ResultsIn the stomach, deoxycholic acid (DCA) decreased the microbial diversity but promoted the abundances of several bacterial genera, such as Limosilactobacillus, Burkholderia–Caballeronia–Paraburkholderia, and Rikenellaceae RC9 gut group. Gastric transcriptome showed that the genes enriched in gastric acid secretion were significantly downregulated, whereas the genes enriched in fat digestion and absorption were obviously upregulated in GIM rats. The GIM rats had four promoted serum BAs, namely cholic acid (CA), DCA, taurocholic acid, and taurodeoxycholic acid. Further correlation analysis showed that the Rikenellaceae RC9 gut group was significantly positively correlated with DCA and RGD1311575 (capping protein-inhibiting regulator of actin dynamics), and RGD1311575 was positively correlated with Fabp1 (fatty acid-binding protein, liver), a key gene involved in fat digestion and absorption. Finally, the upregulated expression of Dgat1 (diacylglycerol acyltransferase 1) and Fabp1 related to fat digestion and absorption was identified by RT-PCR and IHC.ConclusionDCA-induced GIM enhanced gastric fat digestion and absorption function and impaired gastric acid secretion function. The DCA–Rikenellaceae RC9 gut group–RGD1311575/Fabp1 axis might play a key role in the mechanism of bile reflux-related GIM

    Effect of regional body composition changes on bone density remodeling after sleeve gastrectomy

    Get PDF
    BackgroundSleeve gastrectomy (SG) results in bone mineral density (BMD) loss and varying body composition parameters. However, the effects of body compositions on bone health are controversial. In order to accurately demonstrate their relationship and provide new insights into the causes of BMD loss after sleeve gastrectomy, this study is aimed to investigate the role of changes in body composition in BMD loss 12 months after SG.Methods41 Chinese individuals with obesity (25 women and 16 men) who underwent SG were prospectively examined for at least 12 months. Measurements of anthropometrics, body composition, BMD and blood samples were collected.ResultsFor 12 months, the femoral neck (FN) BMD and total hip (TH) BMD decreased significantly compared with baseline in both sexes but not lumbar spine (LS) BMD. Greater TH BMD loss was observed in men than in women. For the first 6 months post-SG, the FN BMD loss was positively associated with the estimated fat free mass index (eFFMI) reduction in women (adjusted β = 0.77, P = 0.004) and positively associated with reduction of subcutaneous fat area (SFA) in men (r = 0.931, P = 0.007). For 12 months post-SG, the FN BMD loss was negatively associated with visceral fat area (VFA) reduction in women (adjusted β = -0.58, P = 0.027) and men (adjusted β = -0.68, P = 0.032). TH BMD loss was positively associated with waist circumference reduction in women (r = 0.448, P = 0.028).ConclusionFN and TH BMD decrease after SG in both women and men. The changes in body compositions are associated with BMD loss at different time points and bone sites. Our data emphasize the limitation of simply taking the total weight loss (% TWL) as an influencing factor of bone mineral density and the necessity of delineating body composition in relevant studies

    Decreased Leptin Is Associated with Alterations in Thyroid-Stimulating Hormone Levels after Roux-en-Y Gastric Bypass Surgery in Obese Euthyroid Patients with Type 2 Diabetes

    Get PDF
    Background: Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid (HPT) axis in vivo and vitro. Its role in thyroid axis regulation after weight loss induced by bariatric surgery is still unknown. The aim of this study was to evaluate the influence of leptin on weight loss and thyroid function variation induced by Roux-en-Y gastric bypass (RYGB) surgery in euthyroid individuals with obesity and type 2 diabetes mellitus (T2DM). Methods: 65 Chinese individuals with obesity and T2DM who underwent RYGB, and 27 healthy volunteers were enrolled in this retrospective study. Participants were evaluated for changes in anthropometric parameters, metabolic indexes, thyroid function, and leptin levels before and 12 months after surgery. Results: After RYGB, all of these patients experienced significant weight reduction and improved glucose control. Metabolic parameters were significantly ameliorated after surgery compared with baseline. Thyroid hormones including free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) declined in parallel. Median (IQR) plasma leptin levels decreased from 33.7 ng/mL (17.9–63.1) to 10.3 ng/mL (4.0–18.5). Pearson correlation analysis showed that TSH was significantly positively correlated with body mass index, C-reactive protein (CRP), and leptin. Multiple stepwise linear regression indicated that leptin and CRP were independent factors affecting TSH. The β coefficients were 0.38 (p = 0.001) and 0.32 (p = 0.004), respectively. There was a significant positive correlation between ΔTSH and Δleptin (r = 0.33, p = 0.01). Conclusion: Decreased or normalized TSH levels after weight loss induced by RYGB might be mediated by the decline in leptin. There could be cross talk between adipose tissue and the HPT axis

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Complement and the Alternative Pathway Play an Important Role in LPS/D-GalN-Induced Fulminant Hepatic Failure

    Get PDF
    Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3−/− mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3−/− mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure
    corecore