461 research outputs found

    How Smokers Became Outlaws: An Application Of The Stakeholder Salience Model To A Social Problem

    Get PDF
    Smoking bans have gone from being essentially non-existent to being the norm over the course of the last 50 years. When some of these authors started teaching, it was the norm to smoke in the classroom, in hospitals, on airplanes, in prison and in the office. Times have changed—smoking is no longer allowed in these locations in the United States. In this paper, an overview of the history of smoking advocacy, the impacts of smoke-free legislation on different stakeholders, and changes in public perceptions of smoking are provided. Mitchell and Agle’s 1997 Stakeholder Salience Model are used to illustrate the changes over time in stakeholder status for both smokers and nonsmokers. The Mitchell Model could have been useful to predict the change in status that the two stakeholder groups experienced and the authors suggest that management should note the emergence of urgent stakeholders in the future, as they may gain salience in other matters that can impact company wealth. Firms have to be aware of both their customers’ needs (smokers) as well as other social movements that may affect the use of their product, such as nonsmoking legislation. This is the first paper to apply stakeholder salience, including the concepts of urgency, power, and legitimacy, to the changing fortunes of smokers. It looks at how smoking and smokers have gone from the norm in U.S. society to outlaw status

    N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    Get PDF
    © 2016 Juneau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 to eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290μ\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24μ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250μ\mum and more than 3 in the 350μ\mum and 500μ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24μ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24μ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100μ\mum and 2.2 mJy at 160μ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250μ\mum, 350μ\mum, and 500μ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250μ\mum, and 3 at 350μ\mum and 500μ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz\sim0.96 for λ\lambda<<300μ\mum) with a stellar mass of MM_{\star}\sim9×\times1010^{10}M_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic

    Universal heat conduction in the iron-arsenide superconductor KFe2As2 : Evidence of a d-wave state

    Full text link
    The thermal conductivity of the iron-arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c-axis. A residual linear term (RLT) at T=0 is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of the RLT in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity was ten times larger. This independence of the RLT on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate for suppressing Tc to zero; the magnitude of the RLT, and its dependence on current direction and on magnetic field; the temperature dependence of the thermal conductivity.Comment: To appear in Physical Review Letter

    Lyman-Alpha Escape from Low-Mass, Compact, High-Redshift Galaxies

    Full text link
    We investigate the effects of stellar populations and sizes on Lyα\alpha escape in 27 spectroscopically confirmed and 35 photometric Lyman-Alpha Emitters (LAEs) at z \approx 2.65 in seven fields of the Bo\"otes region of the NOAO Deep Wide-Field Survey. We use deep HSTHST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M107109 MM_{\star} \approx 10^{7} - 10^{9}~M_{\odot}), younger (ages \lesssim 1 Gyr), smaller (re<r_{e} < 1 kpc), less dust-attenuated (E(B-V) \le 0.26 mag), but have comparable star-formation-rates (SFRs 1100 Myr1\approx 1 - 100~M_{\odot} {\rm yr^{-1}}). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb0.2Z{\rm Z_{neb} \lesssim 0.2 Z_{\odot}}) and/or high ionization parameters (log(U)2.4\log{(\rm U)} \gtrsim -2.4). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyα\alpha escape, by computing star-formation-rate surface density, ΣSFR\Sigma_{\rm SFR} and specific star-formation-rate surface density, ΣsSFR\Sigma_{\rm sSFR}. For a given ΣSFR\Sigma_{\rm SFR}, the Lyα\alpha escape fraction is higher for LAEs with lower stellar masses. LAEs have higher ΣsSFR\Sigma_{\rm sSFR} on average compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyα\alpha photons. These results have important implications for the physics of Lyα\alpha radiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.Comment: 36 pages, 15 figures; Accepted for publication in The Astronomical Journa

    The mass-metallicity relation at z~0.7

    Full text link
    The ISM metallicity and the stellar mass are examined in a sample of 66 galaxies at 0.4<z<1, selected from the Gemini Deep Deep Survey (GDDS) and the Canada-France Redshift Survey (CFRS). We observe a mass-metallicity relation similar to that seen in z~0.1 SDSS galaxies, but displaced towards higher masses and/or lower metallicities. Using this sample, and a small sample of z~2.3 LBGs, a redshift dependent mass-metallicity relation is proposed which describes the observed results.Comment: To appear in the proceedings of the conference "The Spectral Energy Distribution of Gas-Rich Galaxies", eds. C.C. Popescu & R.J. Tuffs (Heidelberg, October 2004

    The Redshift One LDSS-3 Emission line Survey (ROLES) II: Survey method and z~1 mass-dependent star-formation rate density

    Full text link
    Motivated by suggestions of 'cosmic downsizing', in which the dominant contribution to the cosmic star formation rate density (SFRD) proceeds from higher to lower mass galaxies with increasing cosmic time, we describe the design and implementation of the Redshift One LDSS3 Emission line Survey (ROLES). ROLES is a K-selected (22.5 < K_AB < 24.0) survey for dwarf galaxies [8.5<log(M*/Msun)< 9.5] at 0.89 < z < 1.15 drawn from two extremely deep fields (GOODS-S and MS1054-FIRES). Using the [OII]3727 emission line, we obtain redshifts and star-formation rates (SFRs) for star-forming galaxies down to a limit of ~0.3 Msun/yr. We present the [OII] luminosity function measured in ROLES and find a faint end slope of alpha_faint ~ -1.5, similar to that measured at z~0.1 in the SDSS. By combining ROLES with higher mass surveys, we measure the SFRD as a function of stellar mass using [OII] (with and without various empirical corrections), and using SED-fitting to obtain the SFR from the rest-frame UV luminosity for galaxies with spectroscopic redshifts. Our best estimate of the corrected [OII]-SFRD and UV SFRD both independently show that the SFRD evolves equally for galaxies of all masses between z~1 and z~0.1. The exact evolution in normalisation depends on the indicator used, with the [OII]-based estimate showing a change of a factor of ~2.6 and the UV-based a factor of ~6. We discuss possible reasons for the discrepancy in normalisation between the indicators, but note that the magnitude of this uncertainty is comparable to the discrepancy between indicators seen in other z~1 works. Our result that the shape of the SFRD as a function of stellar mass (and hence the mass range of galaxies dominating the SFRD) does not evolve between z~1 and z~0.1 is robust to the choice of indicator. [abridged]Comment: Resubmitted to MNRAS following first referee report. 20 pages, 16 figures. High resolution version available at http://astro.uwaterloo.ca/~dgilbank/papers/roles2.pd

    From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2

    Full text link
    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes

    Observational constraints on the physics behind the evolution of AGN since z ~ 1

    Full text link
    We explore the evolution with redshift of the rest-frame colours and space densities of AGN hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion onto supermassive black holes as a function of cosmic time. Data from serendipitous wide-area XMM surveys of the SDSS footprint (XMM/SDSS, Needles in the Haystack survey) are combined with Chandra deep observations in the AEGIS, GOODS-North and GOODS-South to compile uniformly selected samples of moderate luminosity X-ray AGN [L_X(2-10keV) = 1e41-1e44erg/s] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z=0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fueling supermassive black holes are in operation in the last 5 Gyrs of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1dex since z=0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star-formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate luminosity AGN since z \approx 1 to changes in the suppermassive black hole accretion mode are not favored by our results.Comment: MNRAS accepted, 15 pages, 10 figure
    corecore