231 research outputs found
Enhanced Electrokinetic Transport of Sulfate in Saline Soil
The electrokinetic transport of sulfate was investigated as a means of treating and restoring a sulfate-accumulating saline soil. The electrokinetic treatment decreased the electrical conductivity of the soil, an indicator of soil salinity, to 58.6%, 73.1%, and 83.5% for 7, 14 and 21 days, respectively. More than 96% of the chloride and nitrate were removed within 7 days. However, the removal of sulfate was highly influenced by the anode material. An iron anode removed sulfate effectively, whereas, sulfate was hyper-accumulated in the anodic region when an inert anode was used. The iron anode was oxidized in a sacrificial anodic reaction, which competed with the electrolysis reaction of water at the anode, and finally the reaction prevented the severe acidification of the soil in the anodic region. However, the competing reactions produced hydrogen ions at the anode, and the ions were transported toward the cathode, which, in turn, acidified the soil, especially, in the anodic region. The acidification switched the surface charge of the soil from negative to positive, increasing the interaction between the soil surface and sulfate, and thus inhibiting the transport of sulfate under the electric field. The zeta potential analysis of the soil provided an explanation. The results indicate that preventing severe acidification is an important factor which influences the transport of anions and iron anode for the enhanced removal of anionic pollutants by electrokinetic remediation
Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system
Objective This study investigated the marginal and internal adaptation of individual dental crowns fabricated using a CAD/CAM system (Sirona’s BlueCam), also evaluating the effect of the software version used, and the specific parameter settings in the adaptation of crowns.Material and Methods Forty digital impressions of a master model previously prepared were acquired using an intraoral scanner and divided into four groups based on the software version and on the spacer settings used. The versions 3.8 and 4.2 of the software were used, and the spacer parameter was set at either 40 μm or 80 μm. The marginal and internal fit of the crowns were measured using the replica technique, which uses a low viscosity silicone material that simulates the thickness of the cement layer. The data were analyzed using a Friedman two-way analysis of variance (ANOVA) and paired t-tests with significance level set at
Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene
Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.ope
A Case of Infected Left Atrial Myxoma With Concomitant Mitral Valve Endocarditis
Myxoma is the most common primary tumor in the heart. Cardiac myxomas can present in various manners including embolization and fever, sometimes simulating endocarditis. However, they are rarely infected. We report here a case of an infected left atrial myxoma that seeded a normal mitral valve and atypically presented with multiple embolic events in the lower extremities along with multiple splenic and a cerebellar infarction
High blood viscosity in acute ischemic stroke
BackgroundThe changes in blood viscosity can influence the shear stress at the vessel wall, but there is limited evidence regarding the impact on thrombogenesis and acute stroke. We aimed to investigate the effect of blood viscosity on stroke and the clinical utility of blood viscosity measurements obtained immediately upon hospital arrival.MethodsPatients with suspected stroke visiting the hospital within 24 h of the last known well time were enrolled. Point-of-care testing was used to obtain blood viscosity measurements before intravenous fluid infusion. Blood viscosity was measured as the reactive torque generated at three oscillatory frequencies (1, 5, and 10 rad/sec). Blood viscosity results were compared among patients with ischemic stroke, hemorrhagic stroke, and stroke mimics diagnosed as other than stroke.ResultsAmong 112 enrolled patients, blood viscosity measurements were accomplished within 2.4 ± 1.3 min of vessel puncture. At an oscillatory frequency of 10 rad/sec, blood viscosity differed significantly between the ischemic stroke (24.2 ± 4.9 centipoise, cP) and stroke mimic groups (17.8 ± 6.5 cP, p < 0.001). This finding was consistent at different oscillatory frequencies (134.2 ± 46.3 vs. 102.4 ± 47.2 at 1 rad/sec and 39.2 ± 11.5 vs. 30.4 ± 12.4 at 5 rad/sec, Ps < 0.001), suggesting a relationship between decreases in viscosity and shear rate. The area under the receiver operating curve for differentiating cases of stroke from stroke mimic was 0.79 (95% confidence interval, 0.69–0.88).ConclusionPatients with ischemic stroke exhibit increases in whole blood viscosity, suggesting that blood viscosity measurements can aid in differentiating ischemic stroke from other diseases
Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation
The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer
TmToll-7 Plays a Crucial Role in Innate Immune Responses Against Gram-Negative Bacteria by Regulating 5 AMP Genes in Tenebrio molitor
Although it is known that the Drosophila Toll-7 receptor plays a critical role in antiviral autophagy, its function in other insects has not yet been reported. Here, we have identified a Toll-like receptor 7 gene, TmToll-7, in the coleopteran insect T. molitor and examined its potential role in antibacterial and antifungal immunity. We showed that TmToll-7 expression was significantly induced in larvae 6 h after infection with Escherichia coli and Staphylococcus aureus and 9 h after infection with Candida albicans. However, even though TmToll-7 was induced by all three pathogens, we found that TmToll-7 knockdown significantly reduced larval survival to E. coli, but not to S. aureus, and C. albicans infections. To understand the reasons for this difference, we examined the effects of TmToll-7 knockdown on antimicrobial peptide (AMP) gene expression and found a significant reduction of E. coli-induced expression of AMP genes such as TmTenecin-1, TmDefensin-1, TmDefensin-2, TmColeoptericin-1, and TmAttacin-2. Furthermore, TmToll-7 knockdown larvae infected with E. coli showed significantly higher bacterial growth in the hemolymph compared to control larvae treated with Vermilion dsRNA. Taken together, our results suggest that TmToll-7 plays an important role in regulating the immune response of T. molitor to E. coli
- …