207 research outputs found
Ab initio study of the interface properties of Fe/GaAs(110)
We have investigated the initial growth of Fe on GaAs(110) by means of
density functional theory. In contrast to the conventionally used (001)-surface
the (110)-surface does not reconstruct. Therefore, a flat interface and small
diffusion can be expected, which makes Fe/GaAs(110) a possible candidate for
spintronic applications. Since experimentally, the actual quality of the
interface seems to depend on the growth conditions, e.g., on the flux rate, we
simulate the effect of different flux rates by different Fe coverages of the
semiconductor surface. Systems with low coverages are highly diffusive. With
increasing amount of Fe, i.e., higher flux rates, a flat interface becomes more
stable. The magnetic structure strongly depends on the Fe coverage but no
quenching of the magnetic moments is observed in our calculations.Comment: 9 pages, 8 figure
Modelling Electron Spin Accumulation in a Metallic Nanoparticle
A model describing spin-polarized current via discrete energy levels of a
metallic nanoparticle, which has strongly asymmetric tunnel contacts to two
ferromagnetic leads, is presented.
In absence of spin-relaxation, the model leads to a spin-accumulation in the
nanoparticle, a difference () between the chemical potentials of
spin-up and spin-down electrons, proportional to the current and the Julliere's
tunnel magnetoresistance. Taking into account an energy dependent
spin-relaxation rate , as a function of bias
voltage () exhibits a crossover from linear to a much weaker dependence,
when equals the spin-polarized current through the
nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon
emission and Elliot-Yafet mechanism, the model leads to a crossover from linear
to dependence. The crossover explains recent measurements of the
saturation of the spin-polarized current with in Aluminum nanoparticles,
and leads to the spin-relaxation rate of in an Aluminum
nanoparticle of diameter , for a transition with an energy difference of
one level spacing.Comment: 37 pages, 7 figure
Canted Magnetization Texture in Ferromagnetic Tunnel Junctions
We study the formation of inhomogeneous magnetization texture in the vicinity
of a tunnel junction between two ferromagnetic wires nominally in the
antiparallel configuration and its influence on the magnetoresistance of such a
device. The texture, dependent on magnetization rigidity and crystalline
anisotropy energy in the ferromagnet, appears upon an increase of ferromagnetic
inter-wire coupling above a critical value and it varies with an external
magnetic field.Comment: 5 pages, 4 figure
Half-metallic ferromagnets for magnetic tunnel junctions
Using theoretical arguments, we show that, in order to exploit half-metallic
ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to
eliminate interface states at the Fermi level within the half-metallic gap;
contrary to this, no such problem arises in giant magnetoresistance elements.
Moreover, based on an a priori understanding of the electronic structure, we
propose an antiferromagnetically coupled TMR element, in which interface states
are eliminated, as a paradigm of materials design from first principles. Our
conclusions are supported by ab-initio calculations
Electronic Phase Separation in Manganite/Insulator Interfaces
By using a realist microscopic model, we study the electric and magnetic
properties of the interface between a half metallic manganite and an insulator.
We find that the lack of carriers at the interface debilitates the double
exchange mechanism, weakening the ferromagnetic coupling between the Mn ions.
In this situation the ferromagnetic order of the Mn spins near the interface is
unstable against antiferromagnetic CE correlations, and a separation between
ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces
can occur. We obtain that the insertion of extra layers of undoped manganite at
the interface introduces extra carriers which reinforce the double exchange
mechanism and suppress antiferromagnetic instabilities.Comment: 8 pages, 7 figures include
Tunnelling between non-centrosymmetric superconductors with significant spin-orbit splitting studied theoretically within a two-band treatment
Tunnelling between non-centrosymmetric superconductors with significant
spin-orbit splitting is studied theoretically in a two-band treatment of the
problem. We find that the critical Josephson current may be modulated by
changing the relative angle between the vectors describing absence of inversion
symmetry on each side of the junction. The presence of two gaps also results in
multiple steps in the quasiparticle current-voltage characteristics. We argue
that both these effects may help to determine the pairing states in materials
like CePtSi, UIr and CdReO. We propose experimental tests of
these ideas, including scanning tunnelling microscopy.Comment: 5 pages, 1 figure. Minor changes. Some new references added.
Journal-ref. adde
Magnetic and orbital blocking in Ni nanocontacts
We address the fundamental question of whether magneto-resistance (MR) of
atomic-sized contacts of Nickel is very large because of the formation of a
domain wall (DW) at the neck. Using {\em ab initio} transport calculations we
find that, as in the case of non-magnetic electrodes, transport in Ni
nanocontacts depends very much on the orbital nature of the electrons. Our
results are in agreement with several experiments in the average value of the
conductance. On the other hand, contrary to existing claims, DW scattering does
{\em not} account for large MR in Ni nanocontacts.Comment: 5 pages, 3 Figure
Influence of Roughness and Disorder on Tunneling Magnetoresistance
A systematic, quantitative study of the effect of interface roughness and
disorder on the magnetoresistance of FeCovacuumFeCo magnetic tunnel
junctions is presented based upon parameter-free electronic structure
calculations. Surface roughness is found to have a very strong effect on the
spin-polarized transport while that of disorder in the leads (leads consisting
of a substitutional alloy) is weaker but still sufficient to suppress the huge
tunneling magneto-resistance (TMR) predicted for ideal systems
Effects of different geometries on the conductance, shot noise and tunnel magnetoresistance of double quantum dots
The spin-polarized transport through a coherent strongly coupled double
quantum dot (DQD) system is analyzed theoretically in the sequential and
cotunneling regimes. Using the real-time diagrammatic technique, we analyze the
current, differential conductance, shot noise and tunnel magnetoresistance
(TMR) as a function of both the bias and gate voltages for double quantum dots
coupled in series, in parallel as well as for T-shaped systems. For DQDs
coupled in series, we find a strong dependence of the TMR on the number of
electrons occupying the double dot, and super-Poissonian shot noise in the
Coulomb blockade regime. In addition, for asymmetric DQDs, we analyze transport
in the Pauli spin blockade regime and explain the existence of the leakage
current in terms of cotunneling and spin-flip cotunneling-assisted sequential
tunneling. For DQDs coupled in parallel, we show that the transport
characteristics in the weak coupling regime are qualitatively similar to those
of DQDs coupled in series. On the other hand, in the case of T-shaped quantum
dots we predict a large super-Poissonian shot noise and TMR enhanced above the
Julliere value due to increased occupation of the decoupled quantum dot. We
also discuss the possibility of determining the geometry of the double dot from
transport characteristics. Furthermore, where possible, we compare our results
with existing experimental data on nonmagnetic systems and find qualitative
agreement.Comment: 15 pages, 12 figures, accepted in Phys. Rev.
Probing the Role of the Barrier Layer in Magnetic Tunnel Junction Transport
Magnetic tunnel junctions with a ferrimagnetic barrier layer have been
studied to understand the role of the barrier layer in the tunneling process -
a factor that has been largely overlooked until recently. Epitaxial oxide
junctions of highly spin polarized La0.7Sr0.3MnO3 and Fe3O4 electrodes with
magnetic NiMn2O4 (NMO) insulating barrier layers provide a magnetic tunnel
junction system in which we can probe the effect of the barrier by comparing
junction behavior above and below the Curie temperature of the barrier layer.
When the barrier is paramagnetic, the spin polarized transport is dominated by
interface scattering and surface spin waves; however, when the barrier is
ferrimagnetic, spin flip scattering due to spin waves within the NMO barrier
dominates the transport.Comment: 10 pages, 3 figure
- …