10 research outputs found

    Olfactory preference conditioning changes the reward value of reinforced and non-reinforced odors

    Get PDF
    International audienceOlfaction is determinant for the organization of rodent behavior. In a feeding context, rodents must quickly discriminate whether a nutrient can be ingested or whether it represents a potential danger to them. To understand the learning processes that support food choice, aversive olfactory learning and flavor appetitive learning have been extensively studied. In contrast, little is currently known about olfactory appetitive learning and its mechanisms. We designed a new paradigm to study conditioned olfactory preference in rats. After 8 days of exposure to a pair of odors (one paired with sucrose and the other with water), rats developed a strong and stable preference for the odor associated with the sucrose solution. A series of experiments were conducted to further analyze changes in reward value induced by this paradigm for both stimuli. As expected, the reward value of the reinforced odor changed positively. Interestingly, the reward value of the alternative odor decreased. This devaluation had an impact on further odor comparisons that the animal had to make. This result suggests that appetitive conditioning involving a comparison between two odors not only leads to a change in the reward value of the reinforced odor, but also induces a stable devaluation of the non-reinforced stimulus

    Nutrient Sensing: Another Chemosensitivity of the Olfactory System

    Get PDF
    Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders
    corecore