523 research outputs found

    Gain of function mutants: Ion channels and G protein-coupled receptors

    Get PDF
    Many ion channels and receptors display striking phenotypes for gain-of-function mutations but milder phenotypes for null mutations. Gain of molecular function can have several mechanistic bases: selectivity changes, gating changes including constitutive activation and slowed inactivation, elimination of a subunit that enhances inactivation, decreased drug sensitivity, changes in regulation or trafficking of the channel, or induction of apoptosis. Decreased firing frequency can occur via increased function of K+ or Cl- channels. Channel mutants also cause gain-of-function syndromes at the cellular and circuit level; of these syndromes, the cardiac long-QT syndromes are explained in a more straightforward way than are the epilepsies. G protein-coupled receptors are also affected by activating mutations

    Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel

    Get PDF
    Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 expressed in Xenopus oocytes. When tyrosine kinases were active, flash decaging led both to decreased K+ currents and also to substantial (15–26%) decreases in capacitance, implying net membrane endocytosis. A dominant negative dynamin mutant completely blocked the decaging-induced endocytosis and partially blocked the decaging-induced K+ channel inhibition. Thus, decaging of a single tyrosine residue in a single species of membrane protein leads to massive clathrin-mediated endocytosis; in fact, membrane area equivalent to many clathrin-coated vesicles is withdrawn from the oocyte surface for each Kir2.1 channel inhibited. Oocyte membrane proteins were also labeled with the thiol-reactive fluorophore tetramethylrhodamine-5-maleimide, and manipulations that decreased capacitance also decreased surface membrane fluorescence, confirming the net endocytosis. In single-channel studies, tyrosine kinase activation decreased the membrane density of active Kir2.1 channels per patch but did not change channel conductance or open probability, in agreement with the hypothesis that tyrosine phosphorylation results in endocytosis of Kir2.1 channels. Despite the Kir2.1 inhibition and endocytosis stimulated by tyrosine kinase activation, neither Western blotting nor 32P labeling produced evidence for direct tyrosine phosphorylation of Kir2.1. Therefore, it is likely that tyrosine phosphorylation affects Kir2.1 function indirectly, via interactions between clathrin adaptor proteins and a tyrosine-based sorting motif on Kir2.1 that is revealed by decaging the tyrosine side chain. These interactions inhibit a fraction of the Kir2.1 channels, possibly via direct occlusion of the conduction pathway, and also lead to endocytosis, which further decreases Kir2.1 currents. These data establish that side chain decaging can provide valuable time-resolved data about intracellular signaling systems

    Inwardly rectifying K+ (Kir) channels in Drosophila - A crucial role of cellular milieu factors for Kir channel function

    No full text
    Three cDNAs encoding inwardly rectifying potassium (Kir) channels were isolated from Drosophila melanogaster. The protein sequences of Drosophila KirI (dKirI) and dKirII are moderately (<44%) and dKirIII sequence is weakly (<27%) identical to human Kir channel subunits. During fly development, five dKir channel transcripts derived from three genes are differentially expressed. Whole mount in situ hybridizations revealed dKirI transcripts absent from embryos, but dKirII and dKirIII are expressed in the embryonic hind gut and in Malpighian tubules, respectively, thus covering the entire osmoregulatory system of the developing fly. In the head of adult flies, predominantly dKirII transcripts were detected. When expressed in Xenopus oocytes, dKir channel activity was only observed after amino acid substitutions in their cytosolic tails (e.g. exchange of a unique valine in the NH2 terminus). In contrast, heterologous expression of wild type dKirI and dYirII in Drosophila S2 cells readily evoked typical inwardly rectifying K+ currents, which were weakly sensitive to Ba2+. Thus, the specific milieu of insect cells provides a crucial cellular environment for proper function of dKir channels

    Structure and absolute configuration of phenanthro-perylene quinone pigments from the deep-sea crinoid Hypalocrinus naresianus

    Get PDF
    Two new water-soluble phenanthroperylene quinones, gymnochrome H (2) and monosulfated gymnochrome A (3), as well as the known compounds gymnochrome A (4) and monosulfated gymnochrome D (5) were isolated from the deep-sea crinoid Hypalocrinus naresianus, which had been collected in the deep sea of Japan. The structures of the compounds were elucidated by spectroscopic analysis including HRMS, 1D 1H and 13C NMR, and 2D NMR. The absolute configuration was determined by ECD spectroscopy, analysis of J-couplings and ROE contacts, and DFT calculations. The configuration of the axial chirality of all isolated phenanthroperylene quinones (2–5) was determined to be (P). For gymnochrome H (2) and monosulfated gymnochrome A (3), a (2′S,2″R) configuration was determined, whereas for monosulfated gymnochrome D (5) a (2′R,2″R), configuration was determined. Acetylated quinones are unusual among natural products from an echinoderm and gymnochrome H (2) together with the recently reported gymnochrome G (1) represent the first isolated acetylated phenanthroperylene quinones

    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney

    Get PDF
    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.BackgroundK+ channels have important functions in the kidney, such as maintenance of the membrane potential, volume regulation, recirculation, and secretion of potassium ions. The aim of this study was to obtain more information on the localization and possible functional role of the inwardly rectifying K+ channel, Kir7.1.MethodsKir7.1 cDNA (1114 bp) was isolated from guinea pig kidney (gpKir7.1), and its tissue distribution was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, a genomic DNA fragment (6153 bp) was isolated from a genomic library. cRNA was expressed in Xenopus laevis oocytes for functional studies. Immunohistochemistry and RT-PCR were used to localize Kir7.1 in guinea pig and human kidney.ResultsThe expression of gpKir7.1 in Xenopus laevis oocytes revealed inwardly rectifying K+ currents. The reversal potential was strongly dependent on the extracellular K+ concentration, shifting from -14 mV at 96 mmol/L K+ to -90 mV at 1 mmol/L K+. gpKir7.1 showed a low affinity for Ba2+. Significant expression of gpKir7.1 was found in brain, kidney, and lung, but not in heart, skeletal muscle, liver, or spleen. Immunocytochemical detection in guinea pig identified the gpKir7.1 protein in the basolateral membrane of epithelial cells of the proximal tubule. RT-PCR analysis identified strong gpKir7.1 expression in the proximal tubule and weak expression in glomeruli and thick ascending limb. In isolated human tubule fragments, RT-PCR showed expression in proximal tubule and thick ascending limb.ConclusionOur results suggest that Kir7.1 may contribute to basolateral K+ recycling in the proximal tubule and in the thick ascending limb

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Inwardly rectifying potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (Kir2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (Kir3.x) and the ATP-sensitive K channels (Kir6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming &#945; subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. Kir3.2 with Kir3.3)
    corecore