42 research outputs found

    Cross-Talk with Myeloid Accessory Cells Regulates Human Natural Killer Cell Interferon-γ Responses to Malaria

    Get PDF
    Data from a variety of experimental models suggest that natural killer (NK) cells require signals from accessory cells in order to respond optimally to pathogens, but the precise identity of the cells able to provide such signals depends upon the nature of the infectious organism. Here we show that the ability of human NK cells to produce interferon-γ in response to stimulation by Plasmodium falciparum–infected red blood cells (iRBCs) is strictly dependent upon multiple, contact-dependent and cytokine-mediated signals derived from both monocytes and myeloid dendritic cells (mDCs). Contrary to some previous reports, we find that both monocytes and mDCs express an activated phenotype following short-term incubation with iRBCs and secrete pro-inflammatory cytokines. The magnitude of the NK cell response (and of the KIR(−) CD56(bright) NK cell population in particular) is tightly correlated with resting levels of accessory cell maturation, indicating that heterogeneity of the NK response to malaria is a reflection of deep-rooted heterogeneity in the human innate immune system. Moreover, we show that NK cells are required to maintain the maturation status of resting mDCs and monocytes, providing additional evidence for reciprocal regulation of NK cells and accessory cells. However, NK cell–derived signals are not required for activation of accessory cells by either iRBCs or bacterial lipolysaccharide. Together, these data suggest that there may be differences in the sequence of events required for activation of NK cells by non-viral pathogens compared to the classical model of NK activation by virus-infected or major histocompatibility complex–deficient cells. These findings have far-reaching implications for the study of immunity to infection in human populations

    Mosquito and human hepatocyte infections with Plasmodium ovale curtisi and Plasmodium ovale wallikeri.

    Get PDF
    BACKGROUND: Human ovale malaria is caused by the two closely related species, Plasmodium ovale curtisi and P. ovale wallikeri. Both species are known to relapse from quiescent hepatic forms months or years after the primary infection occurred. Although some studies have succeeded in establishing mosquito transmission for ovale malaria, none have specifically described transmission and human hepatocyte infection of both sibling species. METHODS: Here we describe a simplified protocol for successful transmission of both P. ovale curtisi and P. ovale wallikeri to Anopheles coluzzii mosquitoes and streamlined monitoring of infection using sensitive parasite DNA detection, by loop-activated amplification, in blood-fed mosquitoes. RESULTS: In one experimental infection with P. ovale curtisi and one with P. ovale wallikeri, viable sporozoites were isolated from mosquito salivary glands and used to successfully infect cultured human hepatocytes. CONCLUSIONS: This protocol provides a method for the utilisation of pretreatment clinical blood samples from ovale malaria patients, collected in EDTA, for mosquito infection studies and generation of the hepatic life cycle stages of P. ovale curtisi and P. ovale wallikeri. We also demonstrate the utility of loop-activated amplification as a rapid and sensitive alternative to dissection for estimating the prevalence of infection in Anopheles mosquitoes fed with Plasmodium-infected blood

    Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling

    Get PDF
    The resolution of malaria infection is dependent on a balance between proinflammatory and regulatory immune responses. While early effector T cell responses are required for limiting parasitemia, these responses need to be switched off by regulatory mechanisms in a timely manner to avoid immune-mediated tissue damage. Interleukin-10 receptor (IL-10R) signaling is considered to be a vital component of regulatory responses, although its role in host resistance to severe immune pathology during acute malaria infections is not fully understood. In this study, we have determined the contribution of IL-10R signaling to the regulation of immune responses during Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM). We show that antibody-mediated blockade of the IL-10R during P. berghei ANKA infection in ECM-resistant BALB/c mice leads to amplified T cell activation, higher serum gamma interferon (IFN-γ) concentrations, enhanced intravascular accumulation of both parasitized red blood cells and CD8+ T cells to the brain, and an increased incidence of ECM. Importantly, the pathogenic effects of IL-10R blockade during P. berghei ANKA infection were reversible by depletion of T cells and neutralization of IFN-γ. Our findings underscore the importance of IL-10R signaling in preventing T-cell- and cytokine-mediated pathology during potentially lethal malaria infections

    The ecology of immune state in a wild mammal, Mus musculus domesticus

    Get PDF
    The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice—the same species as the laboratory mouse—as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals’ immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal

    Parasite-Derived Plasma Microparticles Contribute Significantly to Malaria Infection-Induced Inflammation through Potent Macrophage Stimulation

    Get PDF
    There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF−/−, IFN-γ−/−, IL-12−/− and RAG-1−/− malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses

    Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses

    Get PDF
    Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses

    An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens.

    Get PDF
    A large research effort is currently underway to find an effective and affordable malaria vaccine. Tools that enable the rapid evaluation of protective immune responses are essential to vaccine development as they can provide selection criteria to rank order vaccine candidates. In this study we have revisited the Inhibition of Sporozoite Invasion (ISI) assay to assess the ability of antibodies to inhibit sporozoite infection of hepatocytes. By using GFP expressing sporozoites of the rodent parasite P. berghei we are able to robustly quantify parasite infection of hepatocyte cell lines by flow cytometry. In conjunction with recently produced transgenic P. berghei parasites that express P. falciparum sporozoite antigens, we have been able to use this assay to measure antibody mediated inhibition of sporozoite invasion against one of the lead malaria antigens P. falciparum CSP. By combining chimeric rodent parasites expressing P. falciparum antigens and a flow cytometric readout of infection, we are able to robustly assess vaccine-induced antibodies, from mice, rhesus macaques and human clinical trials, for their functional ability to block sporozoite invasion of hepatocytes

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Genomic analysis of Salmonella enterica from Metropolitan Manila abattoirs and markets reveals insights into circulating virulence and antimicrobial resistance genotypes

    Get PDF
    The integration of next-generation sequencing into the identification and characterization of resistant and virulent strains as well as the routine surveillance of foodborne pathogens such as Salmonella enterica have not yet been accomplished in the Philippines. This study investigated the antimicrobial profiles, virulence, and susceptibility of the 105 S. enterica isolates from swine and chicken samples obtained from slaughterhouses and public wet markets in Metropolitan Manila using whole-genome sequence analysis. Four predominant serovars were identified in genotypic serotyping, namely, Infantis (26.7%), Anatum (19.1%), Rissen (18.1%), and London (13.3%). Phenotypic antimicrobial resistance (AMR) profiling revealed that 65% of the isolates were resistant to at least one antibiotic, 37% were multidrug resistant (MDR), and 57% were extended-spectrum β-lactamase producers. Bioinformatic analysis revealed that isolates had resistance genes and plasmids belonging to the Col and Inc plasmid families that confer resistance against tetracycline (64%), sulfonamide (56%), and streptomycin (56%). Further analyses revealed the presence of 155 virulence genes, 42 of which were serovar-specific. The virulence genes primarily code for host immune system modulators, iron acquisition enzyme complexes, host cell invasion proteins, as well as proteins that allow intracellular and intramacrophage survival. This study showed that virulent MDR S. enterica and several phenotypic and genotypic AMR patterns were present in the food chain. It serves as a foundation to understand the current AMR status in the Philippines food chain and to prompt the creation of preventative measures and efficient treatments against foodborne pathogens

    Short-Lived IFN-γ Effector Responses, but Long-Lived IL-10 Memory Responses, to Malaria in an Area of Low Malaria Endemicity

    Get PDF
    Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we analysed malaria-specific CD4+ T cell responses of individuals living in an area of low malaria transmission in northern Thailand, who had had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. CD4+ T cell effector memory (CD45RO+) IFN-γ (24 hours ex vivo restimulation) and cultured IL-10 (6 day secretion into culture supernatant) responses to malaria schizont antigens were detected only in malaria-exposed subjects and were more prominent in subjects with long-lived antibodies or memory B cells specific to malaria antigens. The number of IFN-γ-producing effector memory T cells declined significantly over the 12 months of the study, and with time since last documented malaria infection, with an estimated half life of the response of 3.3 (95% CI 1.9–10.3) years. In sharp contrast, IL-10 responses were sustained for many years after last known malaria infection with no significant decline over at least 6 years. The observations have clear implications for understanding the immunoepidemiology of naturally acquired malaria infections and for malaria vaccine development
    corecore