33 research outputs found

    Implicación de las proteínas de respuesta al estrés en aterotrombosis

    Full text link
    Tesis doctoral realizada en el Instituto de Investigaciones Sanitarias de la Fundación Jiménez Días.Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 29 de Julio de 201

    Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.

    Get PDF
    Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.pre-print5,92 M

    A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis

    Full text link
    Background: Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Tnfrsf12a; Fn14) participate in the inflammatory response associated with vascular remodeling.However, the functional effect ofTWEAK on vascular smoothmuscle cells (VSMCs) is not completely elucidated. Methods: Next generation sequencing-based methodswere performed to identify genes and pathways regulated by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwellmigration assays were used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of TWEAK/Fn14 during neointimal hyperplasia. Findings: TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment method,we found a functionalmodule involved in cell proliferation defined as the minimal network connecting top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors (p15lNK4B) mRNA and protein expression. Downregulation of p15INK4B induced by TWEAK was mediated by mitogen-activated protein kinase ERK and Akt activation. Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15INK4B expression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohistochemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries. Interpretation: Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for treating in-stent restenosis.This work was supported by Instituto de Salud Carlos III (Fondo de Investigaciones Sanitarias ISCiii/FEDER PI13/00395; PI16/01419; PI17/ 01495) and Spanish Biomedical Research Centre in Cardiovascular Disease (CIBERCV) and Metabolic Diseases and Diabetes (CIBERDEM). PM was supported by ISCIII Miguel Servet Program (CP16/00116). CGM was supported by Fundación Conchita Rábago. NMB and VE were supported by the Spanish Ministry of Economy and Competitiveness (Juan de la Cierva IJCI-2016-29630 and Ramón y Ramón Cajal Program RyC-2013-12880, respectively). JMM has been supported a postdoctoral fellowship fromthe American Diabetes Association (Grant 1-15-MI-03) and a postdoctoral fellowship fromthe American Heart Association

    The lysosomal proteome of senescent cells contributes to the senescence secretome

    Get PDF
    Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.© 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd

    Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms

    Get PDF
    Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2′-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta. In vitro, Nrf2 activation by tBHQ suppressed cytokine-induced expression of pro-inflammatory and oxidative stress genes, altered macrophage phenotypes, and promoted autophagic activity. Our results reinforce pharmacological Nrf2 activation as a promising atheroprotective approach in diabetes, according to the plethora of cytoprotective mechanisms involved in the resolution of inflammation and oxidative stress, and restoring autophagy

    Protective role of chaperone-mediated autophagy against atherosclerosis

    Get PDF
    Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases

    CHAPERONE-MEDIATED AUTOPHAGY PROTECTS AGAINST ATHEROSCLEROSIS

    No full text
    Atherosclerosis, the leading cause of cardiovascular death, is driven by hyperlipidemia, inflammation and aggravated by aging. As chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation for intracellular proteins, diminishes with age and is inhibited by lipid excess, we studied if the decline in CMA could contribute to atherosclerosis pathogenesis. We found that CMA declines in human and murine vasculature with disease progression. Inhibition and reactivation of CMA using transgenic mouse models establishes a protective effect of CMA against atherogenesis. CMA upregulation ameliorates both systemic metabolic parameters, and vascular cell function. Our work suggests CMA reactivation could be a viable therapeutic strategy to prevent and reduce cardiovascular disease

    Tumor necrosis factor-like weak inducer of apoptosis or Fn14 deficiency reduce elastase perfusion-induced aortic abdominal aneurysm in mice

    Get PDF
    BACKGROUND: Abdominal aortic aneurysm (AAA) involves leukocyte recruitment, inflammatory cytokine production, vascular cell apoptosis, neovascularization, and vascular remodeling, all of which contribute to aortic dilatation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a cytokine implicated in proinflammatory responses, angiogenesis, and matrix degradation but its role in AAA formation is currently unknown. METHODS AND RESULTS: Experimental AAA with aortic elastase perfusion in mice was induced in wild-type (WT), TWEAK deficient (TWEAK KO), or Fn14-deficient (Fn14 KO) mice. TWEAK or Fn14 KO deficiency reduced aortic expansion, lesion macrophages, CD3(+) T cells, neutrophils, CD31(+) microvessels, CCL2 and CCL5 chemokines expression, and MMP activity after 14 days postperfusion. TWEAK and Fn14 KO mice also showed a reduced loss of medial vascular smooth muscle cells (VSMC) that was related to a reduced number of apoptotic cells in these animals compared with WT mice. Aortas from WT animals present a higher disruption of the elastic layer and MMP activity than those from TWEAK or Fn14 KO mice, indicating a diminished vascular remodeling in KO animals. In vitro experiments unveiled that TWEAK induces CCL5 secretion and MMP-9 activation in both VSMC and bone marrow-derived macrophages, and decrease VSMC viability, effects dependent on Fn14. CONCLUSIONS: TWEAK/Fn14 axis participates in AAA formation by promoting lesion inflammatory cell accumulation, angiogenesis, matrix-degrading protease expression, and vascular remodeling. Blocking TWEAK/Fn14 interaction could be a new target for the treatment of AAA.Supported by Fondo de Investigaciones Sanitarias (Programa I3-SNS to Blanco-Colio), Fundacon Conchita Rabago to Sastre, ISCIII – Subdireccion General de Evaluacion y Fomento de la Investigacion (PI10/00234, PI13/00395, RETICS RD12/ 0042/0038) and Sociedad Española de Arteriosclerosis.S
    corecore