76 research outputs found

    Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients

    Get PDF
    Objectives: In septic patients, reliable non-invasive predictors of fluid responsiveness are needed. We hypothesised that the respiratory changes in the amplitude of the plethysmographic pulse wave (ΔPPLET) would allow the prediction of changes in cardiac index following volume administration in mechanically ventilated septic patients. Design: Prospective clinical investigation. Setting: An 11-bed hospital medical intensive care unit. Patients: Twenty-three deeply sedated septic patients mechanically ventilated with tidal volume ≥ 8 ml/kg and equipped with an arterial catheter and apulse oximetry plethysmographic sensor. Interventions: Respiratory changes in pulse pressure (ΔPP), ΔPPLET and cardiac index (transthoracic Doppler echocardiography) were determined before and after volume infusion of colloids (8 ml/kg). Measurements and main results: Twenty-eight volume challenges were performed in 23 patients. Before volume expansion, ΔPP correlated with ΔPPLET (r 2 = 0.71, p < 0.001). Changes in cardiac index after volume expansion significantly (p < 0.001) correlated with baseline ΔPP (r 2 = 0.76) and ΔPPLET (r 2 = 0.50). The patients were defined as responders to fluid challenge when cardiac index increased by at least 15% after the fluid challenge. Such an event occurred 18 times. Before volume challenge, aΔPP value of 12% and aΔPPLET value of 14% allowed discrimination between responders and non-responders with sensitivity of 100% and 94% respectively and specificity of 70% and 80% respectively. Comparison of areas under the receiver operator characteristic curves showed that ΔPP and ΔPPLET predicted similarly fluid responsiveness. Conclusion: The present study found ΔPPLET to be as accurate as ΔPP for predicting fluid responsiveness in mechanically ventilated septic patient

    Intramucosal–arterial PCO(2) gap fails to reflect intestinal dysoxia in hypoxic hypoxia

    Get PDF
    INTRODUCTION: An elevation in intramucosal–arterial PCO(2) gradient (ΔPCO(2)) could be determined either by tissue hypoxia or by reduced blood flow. Our hypothesis was that in hypoxic hypoxia with preserved blood flow, ΔPCO(2) should not be altered. METHODS: In 17 anesthetized and mechanically ventilated sheep, oxygen delivery was reduced by decreasing flow (ischemic hypoxia, IH) or arterial oxygen saturation (hypoxic hypoxia, HH), or no intervention was made (sham). In the IH group (n = 6), blood flow was lowered by stepwise hemorrhage; in the HH group (n = 6), hydrochloric acid was instilled intratracheally. We measured cardiac output, superior mesenteric blood flow, gases, hemoglobin, and oxygen saturations in arterial blood, mixed venous blood, and mesenteric venous blood, and ileal intramucosal PCO(2) by tonometry. Systemic and intestinal oxygen transport and consumption were calculated, as was ΔPCO(2). After basal measurements, measurements were repeated at 30, 60, and 90 minutes. RESULTS: Both progressive bleeding and hydrochloric acid aspiration provoked critical reductions in systemic and intestinal oxygen delivery and consumption. No changes occurred in the sham group. ΔPCO(2) increased in the IH group (12 ± 10 [mean ± SD] versus 40 ± 13 mmHg; P < 0.001), but remained unchanged in HH and in the sham group (13 ± 6 versus 10 ± 13 mmHg and 8 ± 5 versus 9 ± 6 mmHg; not significant). DISCUSSION: In this experimental model of hypoxic hypoxia with preserved blood flow, ΔPCO(2) was not modified during dependence of oxygen uptake on oxygen transport. These results suggest that ΔPCO(2) might be determined primarily by blood flow

    Increased blood flow prevents intramucosal acidosis in sheep endotoxemia: a controlled study

    Get PDF
    INTRODUCTION: Increased intramucosal–arterial carbon dioxide tension (PCO(2)) difference (ΔPCO(2)) is common in experimental endotoxemia. However, its meaning remains controversial because it has been ascribed to hypoperfusion of intestinal villi or to cytopathic hypoxia. Our hypothesis was that increased blood flow could prevent the increase in ΔPCO(2). METHODS: In 19 anesthetized and mechanically ventilated sheep, we measured cardiac output, superior mesenteric blood flow, lactate, gases, hemoglobin and oxygen saturations in arterial, mixed venous and mesenteric venous blood, and ileal intramucosal PCO(2 )by saline tonometry. Intestinal oxygen transport and consumption were calculated. After basal measurements, sheep were assigned to the following groups, for 120 min: (1) sham (n = 6), (2) normal blood flow (n = 7) and (3) increased blood flow (n = 6). Escherichia coli lipopolysaccharide (5 μg/kg) was injected in the last two groups. Saline solution was used to maintain blood flood at basal levels in the sham and normal blood flow groups, or to increase it to about 50% of basal in the increased blood flow group. RESULTS: In the normal blood flow group, systemic and intestinal oxygen transport and consumption were preserved, but ΔPCO(2 )increased (basal versus 120 min endotoxemia, 7 ± 4 versus 19 ± 4 mmHg; P < 0.001) and metabolic acidosis with a high anion gap ensued (arterial pH 7.39 versus 7.35; anion gap 15 ± 3 versus 18 ± 2 mmol/l; P < 0.001 for both). Increased blood flow prevented the elevation in ΔPCO(2 )(5 ± 7 versus 9 ± 6 mmHg; P = not significant). However, anion-gap metabolic acidosis was deeper (7.42 versus 7.25; 16 ± 3 versus 22 ± 3 mmol/l; P < 0.001 for both). CONCLUSIONS: In this model of endotoxemia, intramucosal acidosis was corrected by increased blood flow and so might follow tissue hypoperfusion. In contrast, anion-gap metabolic acidosis was left uncorrected and even worsened with aggressive volume expansion. These results point to different mechanisms generating both alterations

    Effects of hemorrhage on gastrointestinal oxygenation

    Get PDF
    Objectives: (1) To demonstrate that metabolic parameters are better indicators of tissue hypoxia than regional and whole oxygen consumption (VO2). (2) To compare intramucosal pH (pHi) in different gastrointestinal segments. Design: Prospective, interventional study. Setting: Research laboratory at a university center. Subjects: Fourteen anesthetized, mechanically ventilated dogs. Interventions: Twenty milliliters per kilogram bleeding. Measurements and main results: We placed pulmonary, aortic and mesenteric venous catheters, and an electromagnetic flow probe in the superior mesenteric artery, and gastric, jejunal and ileal tonometers to measure flows, arterial and venous blood gases and lactate, and intramucosal PCO2. We calculated systemic and intestinal oxygen transport (DO2) and consumption (VO2), pHi and arterial minus intramucosal PCO2 (ΔPCO2). Then, we bled the dogs and repeated the measurements after 30 min. Systemic and intestinal DO2 fell (26.0±7.3 versus 8.9±2.6 and 71.9±17.3 versus 24.6±9.6 ml/min per kg, respectively, p<0.0001). Systemic and intestinal VO2 remained unchanged (5.5±1.3 versus 5.4±1.3 and 15.7±5.0 versus 14.9±5.3 ml/min per kg, respectively). Gastric, jejunal and ileal pHi (7.13±0.11 versus 6.96±0.17, 7.18±0.06 versus 6.97±0.15, 7.12±0.11 versus 6.94±0.14, p<0.05) and ΔPCO2 (21±13 versus 35±23, 15±5 versus 33±16, 23±17 versus 38±20, p<0.05) changed accordingly. Arterial and mesenteric venous lactate and their difference, rose significantly (1.7±0.9 versus 3.7±1.4 and 1.8±0.8 versus 4.3±1.5 mmol/l, 0.1±0.6 versus 0.6±0.7 mmol/l, p<0.05). Conclusions: During hemorrhage, systemic and intestinal VO2 remained stable. However, hyperlactatemia and intramucosal acidosis evidenced anaerobic metabolism. pHi changes paralleled in the three intestinal segments.Facultad de Ciencias Médica

    Increased blood flow prevents intramucosal acidosis in sheep endotoxemia: a controlled study

    Get PDF
    Introduction Increased intramucosal–arterial carbon dioxide tension (PCO₂) difference (∆PCO₂) is common in experimental endotoxemia. However, its meaning remains controversial because it has been ascribed to hypoperfusion of intestinal villi or to cytopathic hypoxia. Our hypothesis was that increased blood flow could prevent the increase in ∆PCO₂. Methods In 19 anesthetized and mechanically ventilated sheep, we measured cardiac output, superior mesenteric blood flow, lactate, gases, hemoglobin and oxygen saturations in arterial, mixed venous and mesenteric venous blood, and ileal intramucosal PCO₂ by saline tonometry. Intestinal oxygen transport and consumption were calculated. After basal measurements, sheep were assigned to the following groups, for 120 min: (1) sham (n = 6), (2) normal blood flow (n = 7) and (3) increased blood flow (n = 6). Escherichia coli lipopolysaccharide (5 µg/kg) was injected in the last two groups. Saline solution was used to maintain blood flood at basal levels in the sham and normal blood flow groups, or to increase it to about 50% of basal in the increased blood flow group. Results In the normal blood flow group, systemic and intestinal oxygen transport and consumption were preserved, but ∆PCO₂ increased (basal versus 120 min endotoxemia, 7 ± 4 versus 19 ± 4 mmHg; P < 0.001) and metabolic acidosis with a high anion gap ensued (arterial pH 7.39 versus 7.35; anion gap 15 ± 3 versus 18 ± 2 mmol/l; P < 0.001 for both). Increased blood flow prevented the elevation in ∆PCO2 (5 ± 7 versus 9 ± 6 mmHg; P = not significant). However, anion-gap metabolic acidosis was deeper (7.42 versus 7.25; 16 ± 3 versus 22 ± 3 mmol/l; P < 0.001 for both). Conclusions In this model of endotoxemia, intramucosal acidosis was corrected by increased blood flow and so might follow tissue hypoperfusion. In contrast, anion-gap metabolic acidosis was left uncorrected and even worsened with aggressive volume expansion. These results point to different mechanisms generating both alterations.Facultad de Ciencias Médica

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore