80 research outputs found

    Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site

    Get PDF
    Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps

    Impact of polplar-based phytomanagement on microbial communities in metal-contamined sites

    No full text
    Les activitĂ©s anthropiques et la pollution qu’elles engendrent peuvent entraĂźner des changements drastiques dans les structures des Ă©cosystĂšmes et de leurs services Ă©cologiques. Le phytomanagement basĂ© sur l’utilisation d’espĂšces ligneuses peut contribuer Ă  la restauration des sols et de la diversitĂ© microbienne, tout en permettant la production de biomasses d’intĂ©rĂȘt. Dans le cadre des projets PROLIPHYT (2013-2018, ADEME), BIOFILTREE (2010-2014, ANR) et PHYTOPOP (2007-2011, ANR) gĂ©rĂ©s par le laboratoire Chrono-environnement, des parcelles de phytomanagement ont Ă©tĂ© installĂ©es sur sites polluĂ©s par les Ă©lĂ©ments traces mĂ©talliques (ETMs), pour dĂ©terminer le potentiel de croissance d’espĂšces ligneuses, ainsi que les voies de valorisation des biomasses produites. Dans le cadre de mon projet de thĂšse, diffĂ©rentes approches ont Ă©tĂ© mises en Ɠuvre afin d’identifier et de caractĂ©riser les microorganismes infĂ©odĂ©s aux vĂ©gĂ©taux ligneux implantĂ©s, avec pour finalitĂ© la production de ressources microbiennes permettant d’amĂ©liorer la reprise et la croissance des arbres sur sols polluĂ©s. La premiĂšre approche a consistĂ© Ă  Ă©tudier les communautĂ©s microbiennes en association avec les espĂšces ligneuses par une approche innovante de sĂ©quençage Ă  haut dĂ©bit associĂ©e Ă  l’analyse physico-chimique des sols. Cette mĂ©thode a Ă©tĂ© mise au point et testĂ©e sur trois sites expĂ©rimentaux contaminĂ©s par des ETMs. Elle a permis de rĂ©vĂ©ler les changements dans la structure et la composition des communautĂ©s microbiennes dus Ă  la nature du couvert vĂ©gĂ©tal et aux caractĂ©ristiques du sol (Zappelini et al., 2015; Foulon et al., 2016a; b). La deuxiĂšme approche a consistĂ© Ă  isoler et caractĂ©riser les champignons mycorhiziens et endophytes associĂ©s Ă  des peupliers (Berthelot et al., 2016; Lacercat-Didier et al., 2016). Ces champignons sont connus pour favoriser la croissance des vĂ©gĂ©taux qu’ils colonisent mais Ă©galement pour confĂ©rer une meilleure tolĂ©rance face Ă  un stress mĂ©tallique. Plusieurs campagnes de prĂ©lĂšvements de racines et de champignons sur diffĂ©rents sites polluĂ©s ont permis l’isolement de souches fongiques tolĂ©rantes aux ETMs (comme Serendipita vermifera) et amĂ©liorant la croissance (Phialophora sp. et Leptodontidium sp.). Dans une troisiĂšme approche, les mĂ©canismes impliquĂ©s dans la rĂ©sistance aux ETMs ont Ă©tĂ© Ă©tudiĂ©s i) chez Paxillus involutus pour le Hg (Foulon et al. manuscrit en prĂ©paration) ii) par mĂ©tatranscriptomique fonctionnelle pour le Zn et Cd (Lehembre et al., 2013). L’ensemble de ces travaux a permis i) d’amĂ©liorer nos connaissances sur l’impact du couvert ligneux sur la structure et la composition des communautĂ©s microbiennes, et sur la comprĂ©hension des mĂ©canismes physiologiques mis en jeu ii) de constituer une collection de souches fongiques d’intĂ©rĂȘt pour le phytomanagement de sols contaminĂ©s par les ETMs.Anthropogenic activities can cause dramatic changes in ecosystem structures and their ecological services. Phytomanagement based on the use of woody species can contribute to soil and microbial diversity restoration, while allowing the production of biomass of interest. As part of PROLIPHYT (2013-2018, ADEME), BIOFILTREE (2010-2014, ANR) and PHYTOPOP (2007-2011, ANR) projects, managed by the Chrono-environment laboratory, phytomanagement plots were installed on trace elements (TE) polluted sites to determine the growth potential of woody species and the recovery methods of biomass produced. In my PhD project, different approaches have been implemented to identify and characterize microorganisms subservient to implanted woody plants, with the aim of producing microbial resources to improve the recovery and growth of trees on polluted soil. The first approach was to study microbial communities in association with woody species by innovative high throughput sequencing approach associated with the physical and chemical analysis of soils. This method was developed and tested on three experimental sites contaminated by TE. It revealed changes in the structure and composition of microbial communities due to the nature of the vegetation cover and the soil characteristics (Zappelini et al., 2015; Foulon et al., 2016a; b). The second approach was to isolate and characterize mycorrhizal fungi and endophytes associated with poplars (Berthelot et al., 2016; Lacercat-Didier et al., 2016). These fungi are known to promote the growth of the plants they colonize but also to increase their TE tolerance. Several sampling campaigns of roots and sporocarps on different polluted sites have allowed the isolation of fungal strains tolerant to TE (like Serendipita vermifera) and enhancing growth (Phialophora sp. and Leptodontidium sp.). In a third approach, the mechanisms involved in TE resistance were studied i) in Paxillus involutus for Hg (Foulon et al. In prep) ii) by functional metatranscriptomics for Zn and Cd (Lehembre et al., 2013). In conclusion, this work allowed to i) improve our understanding of the impact of a woody cover on the structure and composition of microbial communities, and on the understanding of the physiological mechanisms involved ii) to constitute a collection of fungal strains that will be of great interest for future phytomanagement projects

    Impact du phytomanagement de sites pollués par les éléments traces métalliques sur les micro-organismes du sol

    No full text
    Anthropogenic activities can cause dramatic changes in ecosystem structures and their ecological services. Phytomanagement based on the use of woody species can contribute to soil and microbial diversity restoration, while allowing the production of biomass of interest. As part of PROLIPHYT (2013-2018, ADEME), BIOFILTREE (2010-2014, ANR) and PHYTOPOP (2007-2011, ANR) projects, managed by the Chrono-environment laboratory, phytomanagement plots were installed on trace elements (TE) polluted sites to determine the growth potential of woody species and the recovery methods of biomass produced. In my PhD project, different approaches have been implemented to identify and characterize microorganisms subservient to implanted woody plants, with the aim of producing microbial resources to improve the recovery and growth of trees on polluted soil. The first approach was to study microbial communities in association with woody species by innovative high throughput sequencing approach associated with the physical and chemical analysis of soils. This method was developed and tested on three experimental sites contaminated by TE. It revealed changes in the structure and composition of microbial communities due to the nature of the vegetation cover and the soil characteristics (Zappelini et al., 2015; Foulon et al., 2016a; b). The second approach was to isolate and characterize mycorrhizal fungi and endophytes associated with poplars (Berthelot et al., 2016; Lacercat-Didier et al., 2016). These fungi are known to promote the growth of the plants they colonize but also to increase their TE tolerance. Several sampling campaigns of roots and sporocarps on different polluted sites have allowed the isolation of fungal strains tolerant to TE (like Serendipita vermifera) and enhancing growth (Phialophora sp. and Leptodontidium sp.). In a third approach, the mechanisms involved in TE resistance were studied i) in Paxillus involutus for Hg (Foulon et al. In prep) ii) by functional metatranscriptomics for Zn and Cd (Lehembre et al., 2013). In conclusion, this work allowed to i) improve our understanding of the impact of a woody cover on the structure and composition of microbial communities, and on the understanding of the physiological mechanisms involved ii) to constitute a collection of fungal strains that will be of great interest for future phytomanagement projects.Les activitĂ©s anthropiques et la pollution qu’elles engendrent peuvent entraĂźner des changements drastiques dans les structures des Ă©cosystĂšmes et de leurs services Ă©cologiques. Le phytomanagement basĂ© sur l’utilisation d’espĂšces ligneuses peut contribuer Ă  la restauration des sols et de la diversitĂ© microbienne, tout en permettant la production de biomasses d’intĂ©rĂȘt. Dans le cadre des projets PROLIPHYT (2013-2018, ADEME), BIOFILTREE (2010-2014, ANR) et PHYTOPOP (2007-2011, ANR) gĂ©rĂ©s par le laboratoire Chrono-environnement, des parcelles de phytomanagement ont Ă©tĂ© installĂ©es sur sites polluĂ©s par les Ă©lĂ©ments traces mĂ©talliques (ETMs), pour dĂ©terminer le potentiel de croissance d’espĂšces ligneuses, ainsi que les voies de valorisation des biomasses produites. Dans le cadre de mon projet de thĂšse, diffĂ©rentes approches ont Ă©tĂ© mises en Ɠuvre afin d’identifier et de caractĂ©riser les microorganismes infĂ©odĂ©s aux vĂ©gĂ©taux ligneux implantĂ©s, avec pour finalitĂ© la production de ressources microbiennes permettant d’amĂ©liorer la reprise et la croissance des arbres sur sols polluĂ©s. La premiĂšre approche a consistĂ© Ă  Ă©tudier les communautĂ©s microbiennes en association avec les espĂšces ligneuses par une approche innovante de sĂ©quençage Ă  haut dĂ©bit associĂ©e Ă  l’analyse physico-chimique des sols. Cette mĂ©thode a Ă©tĂ© mise au point et testĂ©e sur trois sites expĂ©rimentaux contaminĂ©s par des ETMs. Elle a permis de rĂ©vĂ©ler les changements dans la structure et la composition des communautĂ©s microbiennes dus Ă  la nature du couvert vĂ©gĂ©tal et aux caractĂ©ristiques du sol (Zappelini et al., 2015; Foulon et al., 2016a; b). La deuxiĂšme approche a consistĂ© Ă  isoler et caractĂ©riser les champignons mycorhiziens et endophytes associĂ©s Ă  des peupliers (Berthelot et al., 2016; Lacercat-Didier et al., 2016). Ces champignons sont connus pour favoriser la croissance des vĂ©gĂ©taux qu’ils colonisent mais Ă©galement pour confĂ©rer une meilleure tolĂ©rance face Ă  un stress mĂ©tallique. Plusieurs campagnes de prĂ©lĂšvements de racines et de champignons sur diffĂ©rents sites polluĂ©s ont permis l’isolement de souches fongiques tolĂ©rantes aux ETMs (comme Serendipita vermifera) et amĂ©liorant la croissance (Phialophora sp. et Leptodontidium sp.). Dans une troisiĂšme approche, les mĂ©canismes impliquĂ©s dans la rĂ©sistance aux ETMs ont Ă©tĂ© Ă©tudiĂ©s i) chez Paxillus involutus pour le Hg (Foulon et al. manuscrit en prĂ©paration) ii) par mĂ©tatranscriptomique fonctionnelle pour le Zn et Cd (Lehembre et al., 2013). L’ensemble de ces travaux a permis i) d’amĂ©liorer nos connaissances sur l’impact du couvert ligneux sur la structure et la composition des communautĂ©s microbiennes, et sur la comprĂ©hension des mĂ©canismes physiologiques mis en jeu ii) de constituer une collection de souches fongiques d’intĂ©rĂȘt pour le phytomanagement de sols contaminĂ©s par les ETMs

    Interactions between Hg and soil microbes: microbial diversity and mechanisms, with an emphasis on fungal processes

    No full text
    International audienceMercury (Hg) is a highly toxic metal with no known biological function, and it can be highly bioavailable in terrestrial ecosystems. Although fungi are important contributors to a number of soil processes including plant nutrient uptake and decomposition, little is known about the effect of Hg on fungi. Fungi accumulate the largest amount of Hg and are the organisms capable of the highest bioaccumulation of Hg. While referring to detailed mechanisms in bacteria, this mini-review emphasizes the progress made recently on this topic and represents the first step towards a better understanding of the mechanisms underlying Hg tolerance and accumulation in fungal species and hence on the role of fungi within the Hg cycle at Hg-contaminated sites

    Constitutional Law

    No full text
    This Part provides a vignette of French constitutional history as well as some significant features of the current regime, including information on the State and its territory, as well as up-to-date data on population and demographics.University College Dublin2019-07-02 JG: Origianally submitted with flyer only. Introduction chapter added with author's participation
    • 

    corecore