27 research outputs found

    N-Acetylaspartate Metabolism Outside the Brain: Lipogenesis, Histone Acetylation, and Cancer

    Get PDF
    N-acetylaspartate (NAA) is a highly abundant brain metabolite. Aberrant NAA concentrations have been detected in many pathological conditions and although the function of NAA has been extensively investigated in the brain it is still controversial. Only recently, a role of NAA has been reported outside the brain. In brown adipocytes, which show high expression of the NAA-producing and the NAA-cleaving enzyme, the metabolism of NAA has been implicated in lipid synthesis and histone acetylation. Increased expression of N-acetyltransferase 8-like (Nat8l, the gene encoding the NAA synthesizing enzyme) induces de novo lipogenesis and the brown adipocyte phenotype. Accordingly silencing of aspartoacylase, the NAA-cleaving enzyme, reduced brown adipocyte differentiation mechanistically by decreasing histone acetylation and gene transcription. Notably, the expression of Nat8l and the amount of NAA were also shown to be increased in several tumors and inversely correlate with patients’ survival. Additionally, Nat8l silencing reduced cell proliferation in tumor and non-tumor cells, while NAA supplementation could rescue it. However, the mechanism behind has not yet been clarified. It remains to be addressed whether NAA per se and/or its catabolism to acetate and aspartate, metabolites that have both been implicated in tumor growth, are valuable targets for future therapies

    Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus

    Get PDF
    Highly specific targeted drug delivery devices can be obtained with antibody-human serum albumin (mAb-HSA) conjugates. However, their conventional production involves several reaction steps including chemical modification and activation of both proteins followed by cross-linking often involving toxic chemicals. Here, we describe the enzymatic synthesis of mAb-HSA conjugates for targeted drug delivery devices using tyrosinase from Agaricus bisporus under mild reaction conditions (pH 6.8, 25 [degree]C). Reaction conditions were optimized by using fluorescence labeled HSA to facilitate SDS-PAGE analysis with fluorescence scanning. Enzymatic cross-linking in the presence of natural low molecular weight phenolic compounds (e.g. caffeic acid) resulted in reaction products in the molecular weight range of [similar]216 kDa, corresponding to mAb-HSA conjugates. The composition of the conjugates was confirmed with tryptic digestion followed by LC-MS/MS analysis of the resulting peptide fragments. Successful binding of mAb-HSA conjugates (in contrast to free HSA) to MHC II molecules, located on antigen-presenting cells, was demonstrated by both ELISA and flow cytometry analysis.This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement NMP4-LA-2009-228827 NANOFOL and FWF, DK: Metabolic and Cardiovascular Disease: W1226-B18. We thank Tamara Reiter, Graz University of Technology for technical support with SEC; Exbio from the Czech Republic for providing the mAbs and Britta Obrist, Medical University of Graz and the Austrian Centre of Industrial Biotechnology, for technical assistance with LC-MS/MS analysis

    Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice.

    Get PDF
    The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance

    Arxes: retrotransposed genes required for adipogenesis

    Get PDF
    Retrotransposed sequences arise from messenger RNAs (mRNAs) that have been reinserted into genomic DNA by reverse transcription. Usually, these sequences are embedded in dormant regions, collect missense mutations over time and constitute processed, nonfunctional pseudogenes. There are thousands of processed pseudogenes in the mouse and human genome. Here, we report evidence for two paralog genes (termed Arxes1 and Arxes2), which arose by retrotransposition of the signal peptidase Spcs3 followed by a segmental duplication event. They gained a functional promoter that we show to be transactivated by adipogenic transcription factors. We further show that the Arxes mRNAs are highly expressed in adipose tissue and strongly upregulated during adipogenesis in different cell models. Additionally, their expression is elevated by an anti-diabetic agent in vitro and in vivo. Importantly, we provide evidence that the Arxes genes are translated and that the proteins are located in the endoplasmic reticulum. Although the sequence similarity and subcellular location are reminiscent of their parental gene, our data suggest that the Arxes have developed a different function, since their expression is required for adipogenesis, whereas Spcs3 is dispensable. In summary, we report retrotransposed-duplicated genes that evolved from a parental gene to function in a tissue and adipogenesis-specific context

    Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs).</p> <p>Findings</p> <p>Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1.</p> <p>To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment.</p> <p>Conclusion</p> <p>In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb-/- MEFs could be identified. These data and the analysis provide a starting point for further experimental studies to identify target genes for pharmacological intervention and ultimately remodeling of white adipose tissue into brown adipose tissue.</p

    Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis

    Get PDF
    Infiltration of monocytes and macrophages into the site of inflammation is critical in the progression of inflammatory diseases such as atherosclerosis. Cell migration is dependent on the continuous organization of the actin cytoskeleton, which is regulated by members of the small Rho GTPase family (RhoA, Cdc42, Rac) that are also important for the regulation of signal transduction pathways. We have recently reported on reduced plaque formation in an atherosclerotic mouse model transplanted with bone marrow from adipose triglyceride lipase-deficient (Atgl−/−) mice. Here we provide evidence that defective lipolysis in macrophages lacking ATGL, the major enzyme responsible for triacylglycerol hydrolysis, favors an anti-inflammatory M2-like macrophage phenotype. Our data implicate an as yet unrecognized principle that insufficient lipolysis influences macrophage polarization and actin polymerization, resulting in impaired macrophage migration. Sustained phosphorylation of focal adhesion kinase [due to inactivation of its phosphatase by elevated levels of reactive oxygen species (ROS)] results in defective Cdc42, Rac1 and RhoA activation and in increased and sustained activation of Rac2. Inhibition of ROS production restores the migratory capacity of Atgl−/− macrophages. Since monocyte and macrophage migration are a prerequisite for infiltrating the arterial wall, our results provide a molecular link between lipolysis and the development of atherosclerosis

    Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells

    No full text
    Cancer cells rely on glutamine to fuel mitochondria, however it remains unclear whether this is needed for bioenergetic or biosynthetic pathways. Our study suggests that an essential function of mitochondrial glutamine metabolism is to provide aspartate to the cytosol where it can be used for nucleotide and protein synthesis
    corecore