15 research outputs found

    The 5'-3' exoribonuclease pacman is required for epithelial sheet sealing in Drosophila and genetically interacts with the phosphatase puckered

    Get PDF
    Background information. Ribonucleases have been well studied in yeast and bacteria, but their biological significance to developmental processes in multicellular organisms is not well understood. However, there is increasing evidence that specific timed transcript degradation is critical for regulation of many cellular processes, including translational repression, nonsense-mediated decay and RNA interference. The Drosophila gene pacman is highly homologous to the major yeast exoribonuclease XRN1 and is the only known cytoplasmic 5′–3′ exoribonuclease in eukaryotes. To determine the effects of this exoribonuclease in development we have constructed a number of mutations in pacman by P-element excision and characterized the resulting phenotypes. Results. Mutations in pacman resulted in flies with a number of specific phenotypes, such as low viability, dull wings, crooked legs, failure of correct dorsal/thorax closure and defects in wound healing. The epithelial sheet movement involved in dorsal/thorax closure is a conserved morphogenetic process which is similar to that of hind-brain closure in vertebrates and wound healing in humans. As the JNK (c-Jun N-terminal kinase) signalling pathway is known to be involved in dorsal/thorax closure and wound healing, we tested whether pacman affects JNK signalling. Our experiments demonstrate that pacman genetically interacts with puckered, a phosphatase that negatively regulates the JNK signalling pathway. Conclusions. These results reveal that the 5′–3′ exoribonuclease pacman is required for a critical aspect of epithelial sheet sealing in Drosophila. Since these mutations result in specific phenotypes, our data suggest that the exoribonuclease Pacman targets a specific subset of mRNAs involved in this process. One of these targets could be a member of the JNK signalling pathway, although it is possible that a parallel pathway may instead be affected. The exoribonuclease pacman is highly conserved in all eukaryotes, therefore it is likely that it is involved in similar morphological processes, such as wound healing in human cells

    An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed

    Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro

    Get PDF
    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock

    Differential persistence of foot-and-mouth disease virus in African buffalo is related to virus virulence

    Get PDF
    Foot-and-mouth disease virus (FMDV) circulates as multiple serotypes and strains in many endemic regions. In particular the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbour multiple SAT-serotypes for extended periods in the pharyngeal region. However the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV-persistence, as transmission from carrier ruminants has only convincingly been demonstrated for this species. Following co-infection of naïve African buffaloes with three SAT-serotypes isolated from field buffaloes; palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days post infection (dpi). Post-mortem examination identified infectious virus for up to 185 dpi and viral genome up to 400 dpi in lymphoid tissue of the head and neck, mainly focussed in germinal centres. Interestingly viral persistence in vivo was not homogenous and the SAT-1 isolate persisted for longer than SAT-2 and SAT-3. Co-infection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell killing capacity. These data suggest FMDV persistence occurs in the germinal centres of lymphoid tissue but the duration of persistence is related to virus replication and cell killing capacity.NJ was funded as a Wellcome Trust Intermediate Clinical Fellow and funding is acknowledged from the Biotechnology and Biological Sciences Research Council (BBS/E/I/00001523 and BBS/E/I/00001717).http://jvi.asm.org2016-11-30hb2016Microbiology and Plant Patholog

    Foot-and-Mouth Disease Virus Persists in the Light Zone of Germinal Centres

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious viruses of animals and is recognised as the most important constraint to international trade in animals and animal products. Two fundamental problems remain to be understood before more effective control measures can be put in place. These problems are the FMDV “carrier state” and the short duration of immunity after vaccination which contrasts with prolonged immunity after natural infection. Here we show by laser capture microdissection in combination with quantitative real-time reverse transcription polymerase chain reaction, immunohistochemical analysis and corroborate by in situ hybridization that FMDV locates rapidly to, and is maintained in, the light zone of germinal centres following primary infection of naïve cattle. We propose that maintenance of non-replicating FMDV in these sites represents a source of persisting infectious virus and also contributes to the generation of long-lasting antibody responses against neutralising epitopes of the virus

    Trans-Encapsidation of Foot-and-Mouth Disease Virus Genomes Facilitates Escape from Neutralizing Antibodies

    No full text
    Foot-and-mouth disease is an economically devastating disease of livestock caused by foot-and-mouth disease virus (FMDV). Vaccination is the most effective control measure in place to limit the spread of the disease; however, the success of vaccination campaigns is hampered by the antigenic diversity of FMDV and the rapid rate at which new strains emerge that escape pre-existing immunity. FMDV has seven distinct serotypes, and within each serotype are multiple strains that often induce little cross-protective immunity. The diversity of FMDV is a consequence of the high error rate of the RNA-dependent RNA polymerase, accompanied by extensive recombination between genomes during co-infection. Since multiple serotypes and strains co-circulate in regions where FMDV is endemic, co-infection is common, providing the conditions for recombination, and also for other events such as trans-encapsidation in which the genome of one virus is packaged into the capsid of the co-infecting virus. Here, we demonstrate that the co-infection of cells with two FMDVs of different serotypes results in trans-encapsidation of both viral genomes. Crucially, this facilitates the infection of new cells in the presence of neutralizing antibodies that recognize the capsid that is encoded by the packaged genome

    Demonstration of Co-Infection and Trans-Encapsidation of Viral RNA In Vitro Using Epitope-Tagged Foot-and-Mouth Disease Viruses

    No full text
    Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is an economically devastating disease affecting several important livestock species. FMDV is antigenically diverse and exists as seven serotypes comprised of many strains which are poorly cross-neutralised by antibodies induced by infection or vaccination. Co-infection and recombination are important drivers of antigenic diversity, especially in regions where several serotypes co-circulate at high prevalence, and therefore experimental systems to study these events in vitro would be beneficial. Here we have utilised recombinant FMDVs containing an HA or a FLAG epitope tag within the VP1 capsid protein to investigate the products of co-infection in vitro. Co-infection with viruses from the same and from different serotypes was demonstrated by immunofluorescence microscopy and flow cytometry using anti-tag antibodies. FLAG-tagged VP1 and HA-tagged VP1 could be co-immunoprecipitated from co-infected cells, suggesting that newly synthesised capsids may contain VP1 proteins from both co-infecting viruses. Furthermore, we provide the first demonstration of trans-encapsidation of an FMDV genome into capsids comprised of proteins encoded by a co-infecting heterologous virus. This system provides a useful tool for investigating co-infection dynamics in vitro, particularly between closely related strains, and has the advantage that it does not depend upon the availability of strain-specific FMDV antibodies

    Isolation of single-domain antibody fragments that preferentially detect intact (146s) particles of foot-and-mouth disease virus for use in vaccine quality control

    No full text
    Intact (146S) foot-and-mouth disease virus (FMDVs) can dissociate into specific (12S) viral capsid degradation products. FMD vaccines normally consist of inactivated virions. Vaccine quality is dependent on 146S virus particles rather than 12S particles. We earlier isolated two llama single-domain antibody fragments (VHHs) that specifically recognize 146S particles of FMDV strain O1 Manisa and shown their potential use in quality control of FMD vaccines during manufacturing. These 146S-specific VHHs were specific for particular O serotype strains and did not bind strains from other FMDV serotypes. Here, we describe the isolation of 146S-specific VHHs against FMDV SAT2 and Asia 1 strains by phage display selection from llama immune libraries. VHHs that bind both 12S and 146S particles were readily isolated but VHHs that bind specifically to 146S particles could only be isolated by phage display selection using prior depletion for 12S particles. We obtained one 146S-specific VHH—M332F—that binds to strain Asia 1 Shamir and several VHHs that preferentially bind 146S particles of SAT2 strain SAU/2/00, from which we selected VHH M379F for further characterization. Both M332F and M379F did not bind FMDV strains from other serotypes. In a sandwich enzyme-linked immunosorbent assay (ELISA) employing unlabeled and biotinylated versions of the same VHH M332F showed high specificity for 146S particles but M379F showed lower 146S-specificity with some cross-reaction with 12S particles. These ELISAs could detect 146S particle concentrations as low as 2.3–4.6 µg/l. They can be used for FMD vaccine quality control and research and development, for example, to identify virion stabilizing excipients.</p

    Rotavirus NSP1 Inhibits Type I and Type III Interferon Induction.

    Get PDF
    Type I interferons (IFNs) are produced by most cells in response to virus infection and stimulate a program of anti-viral gene expression in neighboring cells to suppress virus replication. Type III IFNs have similar properties, however their effects are limited to epithelial cells at mucosal surfaces due to restricted expression of the type III IFN receptor. Rotavirus (RV) replicates in intestinal epithelial cells that respond predominantly to type III IFNs, and it has been shown that type III rather than type I IFNs are important for controlling RV infections in vivo. The RV NSP1 protein antagonizes the host type I IFN response by targeting IRF-3, IRF-5, IRF-7, or β-TrCP for proteasome-mediated degradation in a strain-specific manner. Here we provide the first demonstration that NSP1 proteins from several human and animal RV strains antagonize type III as well as type I IFN induction. We also show that NSP1 is a potent inhibitor of IRF-1, a previously undescribed property of NSP1 which is conserved among human and animal RVs. Interestingly, all NSP1 proteins were substantially more effective inhibitors of IRF-1 than either IRF-3 or IRF-7 which has significance for evasion of basal anti-viral immunity and type III IFN induction in the intestinal epithelium
    corecore