16 research outputs found

    Landmark Detection in Orbital Images Using Salience Histograms

    Get PDF
    NASA's planetary missions have collected, and continue to collect, massive volumes of orbital imagery. The volume is such that it is difficult to manually review all of the data and determine its significance. As a result, images are indexed and searchable by location and date but generally not by their content. A new automated method analyzes images and identifies "landmarks," or visually salient features such as gullies, craters, dust devil tracks, and the like. This technique uses a statistical measure of salience derived from information theory, so it is not associated with any specific landmark type. It identifies regions that are unusual or that stand out from their surroundings, so the resulting landmarks are context-sensitive areas that can be used to recognize the same area when it is encountered again. A machine learning classifier is used to identify the type of each discovered landmark. Using a specified window size, an intensity histogram is computed for each such window within the larger image (sliding the window across the image). Next, a salience map is computed that specifies, for each pixel, the salience of the window centered at that pixel. The salience map is thresholded to identify landmark contours (polygons) using the upper quartile of salience values. Descriptive attributes are extracted for each landmark polygon: size, perimeter, mean intensity, standard deviation of intensity, and shape features derived from an ellipse fit

    Low Skilled Immigration and the Expansion of Private Schools

    Full text link

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    chi-Shell, a new spatial deployable lattice compared to traditional reticulated shells

    No full text
    The chi-Shells is a new kind of deployable reticulated shells that has features comparable to other traditional shells. Its deployment uses the mechanical properties of a beam grid to generate a three-dimensional shape. This new generation of reticulated shells differs in its typology, but its structural performance and construction process have points in common with other types of shells made in the past. We present the fundamental characteristics of this new generation of shells, comparing it to other existing families with criteria related to materials, span, self weight, load capacity, slenderness, construction process and joint detailing. The development of this technology is accompanied by small-scale physical models that validate the principle of deployment, and a full-scale pavilion to discuss constructive and static aspects

    Rapid Deployment of Curved Surfaces via Programmable Auxetics

    No full text
    Deployable structures are physical mechanisms that can easily transition between two or more geometric configurations; such structures enable industrial, scientific, and consumer applications at a wide variety of scales. This paper develops novel deployable structures that can approximate a large class of doubly-curved surfaces and are easily actuated from a flat initial state via inflation or gravitational loading. The structures are based on two-dimensional rigid mechanical linkages that implicitly encode the curvature of the target shape via a user-programmable pattern that permits locally isotropic scaling under load. We explicitly characterize the shapes that can be realized by such structures-in particular, we show that they can approximate target surfaces of positive mean curvature and bounded scale distortion relative to a given reference domain. Based on this observation, we develop efficient computational design algorithms for approximating a given input geometry. The resulting designs can be rapidly manufactured via digital fabrication technologies such as laser cutting, CNC milling, or 3D printing. We validate our approach through a series of physical prototypes and present several application case studies, ranging from surgical implants to large-scale deployable architecture

    Method of encoding a 3d shape into a 2d surface

    No full text
    The present invention concerns a method for encoding a given 3D shape into a target 2D linkage. The method comprises: (a) providing an initial 2D surface; and (b) defining on the initial 2D surface an auxetic pattern of geometric elements planarly linked between them to obtain the target 2D linkage, the pattern allowing the target 2D linkage to be virtually stretched. The target 2D linkage has a spatially varying scale factor thereby spatially varying the stretching capability of the 2D linkage

    Computational Inverse Design of Surface-based Inflatables

    No full text
    We present a computational inverse design method for a new class of surface-based inflatable structure. Our deployable structures are fabricated by fusing together two layers of inextensible sheet material along carefully selected curves. The fusing curves form a network of tubular channels that can be inflated with air or other fluids. When fully inflated, the initially flat surface assumes a programmed double-curved shape and becomes stiff and load-bearing. We present a method that solves for the layout of air channels that, when inflated, best approximate a given input design. For this purpose, we integrate a forward simulation method for inflation with a gradient-based optimization algorithm that continuously adapts the geometry of the air channels to improve the design objectives. To initialize this non-linear optimization, we propose a novel surface flattening algorithm. When a channel is inflated, it approximately maintains its length, but contracts transversally to its main direction. Our algorithm approximates this deformation behavior by computing a mapping from the 3D design surface to the plane that allows for anisotropic metric scaling within the bounds realizable by the physical system. We show a wide variety of inflatable designs and fabricate several prototypes to validate our approach and highlight potential applications

    A Low-Parametric Rhombic Microstructure Family for Irregular Lattices

    No full text
    New fabrication technologies have significantly decreased the cost of fabrication of shapes with highly complex geometric structure. One important application of complex fine-scale geometric structures is to create variable effective elastic material properties in shapes manufactured from a single material. Modification of material properties has a variety of uses, from aerospace applications to soft robotics and prosthetic devices. Due to its scalability and effectiveness, an increasingly common approach to creating spatially varying materials is to partition a shape into cells and use a parametric family of small-scale geometric structures with known effective properties to fill the cells.We propose a new approach to solving this problem for extruded, planar microstructures. Differently from existing methods for two-scale optimization based on regular grids with square periodic cells, which cannot conform to an arbitrary boundary, we introduce cell decompositions consisting of (nearly) rhombic cells. These meshes have far greater flexibility than those with square cells in terms of approximating arbitrary shapes, and, at the same time, have a number of properties simplifying small-scale structure construction. Our main contributions include a new family of 2D cell geometry structures, explicitly parameterized by their effective Young's moduli E, Poisson's ratios nu, and rhombic angle alpha with the geometry parameters expressed directly as smooth spline functions of E, nu, and alpha. This family leads to smooth transitions between the tiles and can handle a broad range of rhombic cell shapes. We introduce a complete material design pipeline based on this microstructure family, composed of an algorithm to generate rhombic tessellation from quadrilateral meshes and an algorithm to synthesize the microstructure geometry. We fabricated a number of models and experimentally demonstrated how our method, in combination with material optimization, can be used to achieve the desired deformation behavior

    Worst-case structural analysis

    No full text
    corecore