18 research outputs found

    A Robotic System for Solo Surgery in Flexible Ureterorenoscopy

    Get PDF
    Urolithiasis is a common disease with increasing prevalence across all ages. A common treatment option for smaller kidney stones is flexible ureterorenoscopy (fURS), where a flexible ureteroscope (FU) is used for stone removal and to inspect the renal collecting system. The handling of the flexible ureteroscope and end effectors (EEs), however, is challenging and requires two surgeons. In this article, we introduce a modular robotic system for endoscope manipulation, which enables solo surgery (SSU) and is adaptable to various hand-held FUs. Both the developed hardware components and the proposed workflow and its representation in software are described. We then present and discuss the results of an initial user study. Finally, we describe subsequent developmental steps towards more extensive testing by clinical staff

    Modified transarterial chemoembolization with locoregional administration of sorafenib for treating hepatocellular carcinoma: feasibility, efficacy, and safety in the VX-2 rabbit liver tumor model

    Get PDF
    PURPOSE:We aimed to assess the feasibility, efficacy and safety of a local application of sorafenib within a conventional transarterial chemoembolization in the VX-2 tumor-bearing rabbit model.METHODS:VX-2 tumors were induced in the left liver lobe of 10 New Zealand White rabbits. After two weeks, growth was verified by contrast-enhanced computed tomography (CT). Five rabbits were treated by transarterial chemoembolization using an emulsion of sorafenib and ethiodized oil (referred to as SORATACE; n=5). Rabbits receiving oral sorafenib for two weeks (n=2) and untreated rabbits (n=3) served as controls. After two weeks, contrast-enhanced CT was performed, followed by animal necropsy.RESULTS:The change in tumor diameter between baseline and follow-up was significantly different in the SORATACE group compared with the other groups; tumor shrinkage was observed in the SORATACE group only (P = 0.016). In both control groups, preserved hypervascularity was seen in the follow-up CT in all but one tumor. All tumors in the SORATACE group were devascularized in the follow-up CT. Importantly, substantial parenchymal damage in nontargeted areas of the tumor-bearing liver lobe was seen in rabbits treated with SORATACE.CONCLUSION:SORATACE demonstrated high efficacy in the treatment of experimental VX-2 liver tumors but was also associated with substantial liver parenchymal toxicity

    Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients

    Get PDF
    BACKGROUND: Up to 30-40% of Ewing sarcoma (EwS) patients with non-metastatic disease develop local or metastatic relapse within a time span of 2-10 years. This is in part caused by the absence of prognostic biomarkers that can identify high-risk patients and thus assign them to risk-adapted monitoring and treatment regimens. Since cancer stemness has been associated with tumour relapse and poor patient outcomes, we investigated in the current study the prognostic potential SOX2 (sex determining region Y box 2) - a major transcription factor involved in development and stemness - which was previously described to contribute to the undifferentiated phenotype of EwS. METHODS: Two independent patient cohorts, one consisting of 189 retrospectively collected EwS tumours with corresponding mRNA expression data (test-cohort) and the other consisting of 141 prospectively collected formalin-fixed and paraffin-embedded resected tumours (validation and cohort), were employed to analyse SOX2 expression levels through DNA microarrays or immunohistochemistry, respectively, and to compare them with clinical parameters and patient outcomes. Two methods were employed to test the validity of the results at both the mRNA and protein levels. FINDINGS: Both cohorts showed that only a subset of EwS patients (16-20%) expressed high SOX2 mRNA or protein levels, which significantly correlated with poor overall survival. Multivariate analyses of our validation-cohort revealed that high SOX2 expression represents a major risk-factor for poor survival (HR = 3·19; 95%CI 1·74-5·84; p < 0·01) that is independent from metastasis and other known clinical risk-factors at the time of diagnosis. Univariate analyses demonstrated that SOX2-high expression was correlated with tumour relapse (p = 0·002). The median first relapse was at 14·7 months (range: 3·5-180·7). INTERPRETATION: High SOX2 expression constitutes an independent prognostic biomarker for EwS patients with poor outcomes. This may help to identify patients with localised disease who are at high risk for tumour relapse within the first two years after diagnosis. FUNDING: The laboratory of T. G. P. Grünewald is supported by grants from the 'Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)', by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the 'Mehr LEBEN für krebskranke Kinder - Bettina-Bräu-Stiftung', the Walter Schulz Foundation, the Wilhelm Sander-Foundation (2016.167.1), the Friedrich-Baur foundation, the Matthias-Lackas foundation, the Barbara & Hubertus Trettner foundation, the Dr. Leopold & Carmen Ellinger foundation, the Gert & Susanna Mayer foundation, the Deutsche Forschungsgemeinschaft (DFG 391665916), and by the German Cancer Aid (DKH-111886 and DKH-70112257). J. Li was supported by a scholarship of the China Scholarship Council (CSC), J. Musa was supported by a scholarship of the Kind-Philipp foundation, and T. L. B. Hölting by a scholarship of the German Cancer Aid. M. F. Orth and M. M. L. Knott were supported by scholarships of the German National Academic Foundation. G. Sannino was supported by a scholarship from the Fritz-Thyssen Foundation (FTF-40.15.0.030MN). The work of U. Dirksen is supported by grants from the German Cancer Aid (DKH-108128, DKH-70112018, and DKH-70113419), the ERA-Net-TRANSCAN consortium (project number 01KT1310), and Euro Ewing Consortium (EEC, project number EU-FP7 602,856), both funded under the European Commission Seventh Framework Program FP7-HEALTH (http://cordis.europa.eu/), the Barbara & Hubertus Trettner foundation, and the Gert & Susanna Mayer foundation. G. Hardiman was supported by grants from the National Science Foundation (SC EPSCoR) and National Institutes of Health (U01-DA045300). The laboratory of J. Alonso was supported by Instituto de Salud Carlos III (PI12/00816; PI16CIII/00026); Asociación Pablo Ugarte (TPY-M 1149/13; TRPV 205/18), ASION (TVP 141/17), Fundación Sonrisa de Alex & Todos somos Iván (TVP 1324/15).The laboratory of T. G. P. Grünewald is supported by grants from the ‘Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)’, by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the ‘Mehr LEBEN für krebskranke Kinder – Bettina-Bräu-Stiftung’, the Walter Schulz Foundation, the Wilhelm Sander-Foundation (2016.167.1), the Friedrich-Baur foundation, the Matthias-Lackas foundation, the Barbara & Hubertus Trettner foundation, the Dr. Leopold und Carmen Ellinger foundation, the Gert & Susanna Mayer foundation, the Rolf M. Schwiete foundation, the Deutsche Forschungsgemeinschaft (DFG 391665916), and by the German Cancer Aid (DKH-111886 and DKH-70112257). J. Li was supported by a scholarship of the China Scholarship Council (CSC), J. Musa was supported by a scholarship of the Kind-Philipp foundation, and T. L. B. Hölting by a scholarship of the German Cancer Aid. M. F. Orth and M. M. L. Knott were supported by scholarships of the German National Academic Foundation. G. Sannino was supported from a scholarship from the Fritz-Thyssen Foundation (FTF-40.15.0.030MN). The work of U. Dirksen is supported by grants from the German Cancerr Aid (DKH-108128, DKH-70112018, and DKH-70113419), the ERA-Net-TRANSCAN consortium (project number 01KT1310), and Euro Ewing Consortium (EEC, project number EU-FP7 602856), both funded under the European Commission Seventh Framework Program FP7-HEALTH (http://cordis.europa.eu/), the Barbara & Hubertus Trettner foundation, and the Gert & Susanna Mayer foundation. G. Hardiman was supported by grants from the National Science Foundation (SC EPSCoR) and National Institutes of Health (U01-DA045300). The laboratory of J. Alonso was supported by Instituto de Salud Carlos III (PI12/00816; PI16CIII/00026); Asociación Pablo Ugarte (TPY-M 1149/13; TRPV 205/18), ASION (TVP 141/17), Fundación Sonrisa de Alex & Todos somos Iván (TVP 1324/15).S

    Spatio-temporal distribution of tubulin and tubulin-specific chaperones in the sensory epithelium of the murine Cochlea

    No full text
    Die fünf Tubulin-bindenden Kofaktoren (TBC) sind an der Tubulinsynthese und der Bildung von Mikrotubuli beteiligt. Ihre Bedeutung wird durch verschiedene Krankheiten und Syndrome hervorgehoben, die durch Funktionsstörungen oder Mutationen dieser Proteine verursacht werden. Posttranslationale Modifikationen (PTMs) von Tubulin fördern verschiedene Eigenschaften, einschließlich stabilitätsfördernder Subpopulationen von Tubulin. Die zell- und zeitspezifische Verteilung der PTMs ist bisher nur im Corti-Organ bei Gerbils untersucht worden. Ziel der vorliegenden Studie war es, die zelltyp- und zeitspezifischen Expressionsmuster von TBC-Proteinen und PTMs erstmals in der murinen Cochlea über mehrere Entwicklungsstadien hinweg zu untersuchen. Dazu wurden murine Cochleae im postnatalen (P) Alter P1, P7 und P14 mittels Immunfluoreszenzanalyse untersucht. Die Untersuchungen zeigten mehrere erhebliche Interspezies-Unterschiede in der Verteilung der PTMs zwischen Gerbil und Maus. Darüber hinaus ist dies die erste Studie, die die räumlich-zeitliche Verteilung von TBCs in einem Gewebe beschreibt, das ein volatiles Expressionsmuster aufweist. Die Expressionsanalyse von TBC-Proteinen und PTMs des Tubulins zeigt, dass diese Proteine eine wichtige Rolle bei der physiologischen Entwicklung der Cochlea spielen und für das Hören essentiell sein könnten.The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the creation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing

    Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation

    No full text
    The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre‐crosslinking CNF using calcium and subsequently pressing the gel through micrometer‐sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well‐distributed fibroblast growth. This cost‐effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner

    Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation

    Get PDF
    The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre‐crosslinking CNF using calcium and subsequently pressing the gel through micrometer‐sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well‐distributed fibroblast growth. This cost‐effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner

    Irreversible electroporation (IRE) : standardization of terminology and reporting criteria for analysis and comparison

    No full text
    BACKGROUND: Irreversible electroporation (IRE) as newer ablation modality has been introduced and its clinical niche is under investigation. At present just one IRE system has been approved for clinical use and is currently commercially available (NanoKnife® system). In 2014, the International Working Group on Image-Guided Tumor Ablation updated the recommendation about standardization of terms and reporting criteria for image-guided tumor ablation. The IRE method is not covered in detail. But the non-thermal IRE method and the NanoKnife System differ fundamentally from established ablations techniques, especially thermal approaches, e.g. radio frequency ablation (RFA). MATERIAL AND METHODS: As numerous publications on IRE with varying terminology exist so far - with numbers continuously increasing - standardized terms and reporting criteria of IRE are needed urgently. The use of standardized terminology may then allow for a better inter-study comparison of the methodology applied as well as results achieved. RESULTS: Thus, the main objective of this document is to supplement the updated recommendation for image-guided tumor ablation by outlining a standardized set of terminology for the IRE procedure with the NanoKnife Sytem as well as address essential clinical and technical informations that should be provided when reporting on IRE tumor ablation. CONCLUSIONS: We emphasize that the usage of all above recommended reporting criteria and terms can make IRE ablation reports comparable and provide treatment transparency to assess the current value of IRE and provide further development
    corecore