842 research outputs found

    Does Large-Scale Ocean Circulation Structure Life History Connectivity in Antarctic Toothfish (Dissostichus mawsoni)?

    Get PDF
    A multidisciplinary approach incorporating otolith chemistry, age data, and numerical Lagrangian particle simulations indicated a single, self-recruiting population of Antarctic toothfish (Dissostichus mawsoni) in the Southeast Pacific Basin (SPB) and Ross Sea, with a life history structured by the large-scale circulation. Chemistry deposited prior to capture along otolith edges demonstrated strong environmental heterogeneity, yet the chemistry in otolith nuclei, deposited during early life, showed no differences. Age data showed only adult fish in catches on the Pacific-Antarctic Ridge in the SPB and structuring of life stages consistent with transport pathways from the northern Ross Sea. Lagrangian particle simulations predicted that early life stages following the flow in the SPB would be transported to areas in the Ross Sea where juveniles are caught, whereas the circulation would facilitate adult movement along the shelf slope and back into the SPB where spawning adults are caught. These results suggest that successfully spawning fish spend only a part of their adult life history in the Ross Sea, areas in the eastern Ross Sea contribute disproportionately to the spawning population, and areas in the southwestern Ross Sea may supply fisheries in the southern Indian Ocean

    Seasonal temperatures from δ18O in Recent Spanish tufa stromatolites: Equilibrium redux!

    Get PDF
    This study focuses on recent debate over the value of stable-isotope-based environmental proxies recorded in riverine tufa-stromatolites. We recovered a 12-year record (1999-2012) of river-bed tufa stromatolites in the River Piedra (NE Spain) along with a partly overlapping 15-year record (1994 to 2009) of accumulations in a drainage pipe: both deposits formed in water with near identical physico/chemical parameters. Measured water temperature (Tw) data and near constant δ18Owater composition allowed selection of an ‘equilibrium’ palaeotemperature equation that best replicated actual temperatures. We found, as other have, that both the Epstein et al. (1951) and Kim & O’Neil (1997) formulas for Tw calculation from equilibrium calcite δ18O compositions were appropriate for the River Piedra where tufa deposition rates are high, means between 5.6 and 10.8 mm in six months. δ18Ocalcite in both the river and the pipe deposits record essentially the full actual seasonal Tw range. Only the coldest times (Tw < 10ºC), when calcite precipitation mass decreased to minimum, are likely to be unrepresented, an effect most noticeable in the pipe where depositional masses are smaller and below sample resolution. While we cannot rule out kinetic effects on δ18Ocalcite-based calculated Tw, the good fit between measured Tw and δ18Ocalcite-calculated Tw indicates that temperature is the principal control. Textural and deposition rate variability between the river and pipe settings are caused by differences in flow velocity and illumination. In the river, calcification of growing cyanobacterial mat occurred throughout the year, producing composite dense and porous laminae, whereas in the pipe, discontinuous cyanobacterial growth in winter promoted more abiogenic calcification. High-resolution δ18Ocalcite data from synchronous pipe and river laminae show that reversals in Tw occur within laminae, not at lamina boundaries, a pattern consistent with progressive increase in calcite precipitation rate as cyanobacterial growth re-established in spring

    Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK

    Get PDF
    Evidence shows that habitats with potential to mitigate against greenhouse gases emissions, by taking up and storing CO2, are being lost due to the effects of on-going human activities and climate change. The carbon storage by terrestrial habitats (e.g. tropical forests) and the role of coastal habitats (‘Blue Carbon’) as carbon storage sinks is well recognised. Offshore shelf sediments are also a manageable carbon store, covering ∼9% of global marine area, but not currently protected by international agreements to enable their conservation. Through a scenario analysis, we explore the economic value of the damage of human activities and climate change can inflict on UK marine habitats, including shelf sea sediments. In a scenario of increased human and climate pressures over a 25-year period, we estimate damage costs up to US$12.5 billion from carbon release linked to disturbance of coastal and shelf sea sediment carbon stores. It may be possible to manage socio-economic pressure to maintain sedimentary carbon storage, but the trade-offs with other global social welfare benefits such as food security will have to be taken into account. To develop effective incentive mechanisms to preserve these valuable coastal and marine ecosystems within a sustainability governance framework, robust evidence is required

    Taking the heat out of British Jurassic septarian concretions

    Get PDF
    Septarian carbonate concretions in marine mudrocks contain calcite cements that should represent evolving conditions from ambient temperature, shallow subsurface environments to warmer, burial diagenetic conditions. Clumped isotope results from British Middle and Upper Jurassic concretions indicate that most concretion body calcites formed at temperatures between 9 ± 5°C and 18 ± 5°C from marine pore waters with δ18O values between 0.2 ± 1.1‰ and −2.2 ± 1.1‰VSMOW. Early diagenetic, brown, fibrous calcite fracture cements mostly formed at temperatures between 15 ± 5°C and 19 ± 5°C, again from marine‐derived pore fluids with δ18O compositions between −0.5 ± 1.1‰ and 0.3 ± 1.2‰VSMOW. Two of these cements showed evolution to warmer temperatures and more evolved pore fluids with growth, indicating transition to deeper burial conditions. Later diagenetic, sparry calcite cements gave more variable temperatures but all indicated involvement of meteoric pore fluids. The highest clumped isotope temperature (43 ± 6°C) is within error of the 50°C regional maximum burial temperature estimate. These results are consistent with published geological and stable isotope constraints on the formation of Jurassic septarian concretions and highlight their potential as robust archives of marine benthic palaeotemperatures. Some of these results differ from clumped isotope data in an earlier study that reported higher temperatures for concretion body and early diagenetic fibrous cement fringes probably due to methodological differences

    Age determination of the Lower Watrous red-beds of the Williston Basin, Saskatchewan, Canada

    Get PDF
    The age of the Lower Watrous red-beds, which host hydrocarbon reserves in the Williston Basin, along with equivalent formations in Manitoba (Lower Amaranth Formation) and the U.S.A. (Saude Member of the Spearfish Formation) is a controversial subject, with this succession being assigned ages from Mississippian to Middle Jurassic; a timespan of over 150 million years. Using existing published data and new geochemical analyses on the Watrous Formation, we present a Triassic age for the Lower Watrous red-beds. An established well-log correlation dates the Saude Member red-beds as post-Middle Permian. Some previously published geochemical and palynological data from equivalent formations are in agreement with this age, but several palaeomagnetic studies have provided conflicting results, with age assignments of Mississippian through to Late Triassic. Our study demonstrates the equivalency of the Saude Member and Lower Watrous red-beds by extending the well-log correlation north, from the U.S.A. into Saskatchewan. The combined new strontium, sulfur and oxygen isotopic analyses of isolated Lower Watrous anhydrite nodules are most consistent with an Early or Late Triassic age, which is in agreement with the well-log correlation and potassium-argon dating of a pre-red-beds impact structure. A Pennsylvanian age for the Lower Watrous red-beds is considered most unlikely

    Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences

    Get PDF
    A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf

    Red Aesthetics, Intermediality and the Use of Posters in Chinese Cinema after 1949

    Get PDF
    Abstract: This article focuses on the aesthetic and affective techniques of saturation through which posters legitimated the Party-State in Mao’s China by closing the gap between everyday experience and political ideology. Propaganda posters were designed to put into practice the principle of unity, as conceptua- lised by Mao Zedong. The argument posits that while the “poster” is normally a printed edition of a painting or design intended for mass distribution in this way, the term may fairly be deployed to capture other cultural objects that function as “posters”, in that they provide public, political information that expresses or con- structs a political self in aesthetic form. This approach requires a metonymic understanding of a visual field in which cultural objects are interrelated and mutually reinforcing. The essay draws on recent in-depth interviews with poster artists of the 1960s and 1970s

    The Eleventh and Twelfth data releases of the Sloan Digital Sky Survey: Final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) tookdata from 2008 to 2014 using the original SDSS wide-field imager, theoriginal and an upgraded multi-object fiber-fed optical spectrograph, anew near-infrared high-resolution spectrograph, and a novel opticalinterferometer. All of the data from SDSS-III are now made public. Inparticular, this paper describes Data Release 11 (DR11) including alldata acquired through 2013 July, and Data Release 12 (DR12) adding dataacquired through 2014 July (including all data included in previous datareleases), marking the end of SDSS-III observing. Relative to ourprevious public release (DR10), DR12 adds one million new spectra ofgalaxies and quasars from the Baryon Oscillation Spectroscopic Survey(BOSS) over an additional 3000 deg2 of sky, more than triplesthe number of H-band spectra of stars as part of the Apache PointObservatory (APO) Galactic Evolution Experiment (APOGEE), and includesrepeated accurate radial velocity measurements of 5500 stars from theMulti-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS).The APOGEE outputs now include the measured abundances of 15 differentelements for each star. In total, SDSS-III added 5200 deg2 ofugriz imaging; 155,520 spectra of 138,099 stars as part of the SloanExploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey;2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and247,216 stars over 9376 deg2; 618,080 APOGEE spectra of156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since itsfirst light in 1998, SDSS has imaged over 1/3 of the Celestial sphere infive bands and obtained over five million astronomical spectra.Fil: Alam, Shadab. University of Carnegie Mellon; Estados UnidosFil: Albareti, Franco D.. Universidad Autónoma de Madrid; EspañaFil: Prieto, Carlos Allende. Universidad de La Laguna; EspañaFil: Anders, F.. Leibniz Institute For Astrophysics Potsdam; AlemaniaFil: Anderson, Scott F.. University of Utah; Estados UnidosFil: Anderton, Timothy. University of Utah; Estados UnidosFil: Andrews, Brett H.. Ohio State University; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Armengaud, Eric. Service de Physique Des Particules; FranciaFil: Aubourg, Éric. Université Paris Diderot - Paris 7; FranciaFil: Bailey, Stephen. Lawrence Berkeley National Laboratory; Estados UnidosFil: Basu, Sarbani. University of Yale; Estados UnidosFil: Bautista, Julian E.. Université Paris Diderot - Paris 7; FranciaFil: Beaton, Rachael L.. University of Virginia; Estados UnidosFil: Beers, Timothy C.. University of Notre Dame; Estados UnidosFil: Bender, Chad F.. Pennsylvania State University; Estados UnidosFil: Berlind, Andreas A.. Vanderbilt University; Estados UnidosFil: Beutler, Florian. Lawrence Berkeley National Laboratory; Estados UnidosFil: Bhardwaj, Vaishali. Lawrence Berkeley National Laboratory; Estados UnidosFil: Bird, Jonathan C.. Vanderbilt University; Estados UnidosFil: Bizyaev, Dmitry. Apache Point Observatory; Estados UnidosFil: Blake, Cullen H.. University of Pennsylvania; Estados UnidosFil: Blanton, Michael R.. New York University; Estados UnidosFil: Blomqvist, Michael. University of California at Irvine; Estados UnidosFil: Bochanski, John J.. University of Washington; Estados UnidosFil: Bolton, Adam S.. University of Utah; Estados UnidosFil: Bovy, Jo. Institute For Advanced Studies; Estados UnidosFil: Shelden, Bradley, A.. Apache Point Observatory; Estados UnidosFil: Brandt, W. N.. Pennsylvania State University; Estados UnidosFil: Brauer, D. E.. Leibniz Institute For Astrophysics Potsdam; AlemaniaFil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Institut Max Planck Fuer Gesellschaft. Max Planck Institute For Extraterrestrial Physics; AlemaniaFil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin
    corecore