19 research outputs found

    Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data

    Get PDF
    Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return LIght Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10° 26′ N, 83° 59′ W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r2 = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r2 = 0.51) and tree density (p-value = 0.002, r2 = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r2 = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties

    Mind the gap: reconciling tropical forest carbon flux estimates from earth observation and national reporting requires transparency

    Get PDF
    Background: The application of different approaches calculating the anthropogenic carbon net flux from land, leads to estimates that vary considerably. One reason for these variations is the extent to which approaches consider forest land to be “managed” by humans, and thus contributing to the net anthropogenic flux. Global Earth Observation (EO) datasets characterising spatio-temporal changes in land cover and carbon stocks provide an independent and consistent approach to estimate forest carbon fluxes. These can be compared against results reported in National Greenhouse Gas Inventories (NGHGIs) to support accurate and timely measuring, reporting and verification (MRV). Using Brazil as a primary case study, with additional analysis in Indonesia and Malaysia, we compare a Global EO-based dataset of forest carbon fluxes to results reported in NGHGIs. Results: Between 2001 and 2020, the EO-derived estimates of all forest-related emissions and removals indicate that Brazil was a net sink of carbon (− 0.2 GtCO2yr−1), while Brazil’s NGHGI reported a net carbon source (+ 0.8 GtCO2yr−1). After adjusting the EO estimate to use the Brazilian NGHGI definition of managed forest and other assumptions used in the inventory’s methodology, the EO net flux became a source of + 0.6 GtCO2yr−1, comparable to the NGHGI. Remaining discrepancies are due largely to differing carbon removal factors and forest types applied in the two datasets. In Indonesia, the EO and NGHGI net flux estimates were similar (+ 0.6 GtCO2 yr−1), but in Malaysia, they differed in both magnitude and sign (NGHGI: -0.2 GtCO2 yr−1; Global EO: + 0.2 GtCO2 yr−1). Spatially explicit datasets on forest types were not publicly available for analysis from either NGHGI, limiting the possibility of detailed adjustments. Conclusions: By adjusting the EO dataset to improve comparability with carbon fluxes estimated for managed forests in the Brazilian NGHGI, initially diverging estimates were largely reconciled and remaining differences can be explained. Despite limited spatial data available for Indonesia and Malaysia, our comparison indicated specific aspects where differing approaches may explain divergence, including uncertainties and inaccuracies. Our study highlights the importance of enhanced transparency, as set out by the Paris Agreement, to enable alignment between different approaches for independent measuring and verification

    Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning

    No full text
    Fire is a significant agent of landscape transformation on Earth, and a dynamic and ephemeral process that is challenging to map. Difficulties include the seasonality of native vegetation in areas affected by fire, the high levels of spectral heterogeneity due to the spatial and temporal variability of the burned areas, distinct persistence of the fire signal, increase in cloud and smoke cover surrounding burned areas, and difficulty in detecting understory fire signals. To produce a large-scale time-series of burned area, a robust number of observations and a more efficient sampling strategy is needed. In order to overcome these challenges, we used a novel strategy based on a machine-learning algorithm to map monthly burned areas from 1985 to 2020 using Landsat-based annual quality mosaics retrieved from minimum NBR values. The annual mosaics integrated year-round observations of burned and unburned spectral data (i.e., RED, NIR, SWIR-1, and SWIR-2), and used them to train a Deep Neural Network model, which resulted in annual maps of areas burned by land use type for all six Brazilian biomes. The annual dataset was used to retrieve the frequency of the burned area, while the date on which the minimum NBR was captured in a year, was used to reconstruct 36 years of monthly burned area. Results of this effort indicated that 19.6% (1.6 million km2) of the Brazilian territory was burned from 1985 to 2020, with 61% of this area burned at least once. Most of the burning (83%) occurred between July and October. The Amazon and Cerrado, together, accounted for 85% of the area burned at least once in Brazil. Native vegetation was the land cover most affected by fire, representing 65% of the burned area, while the remaining 35% burned in areas dominated by anthropogenic land uses, mainly pasture. This novel dataset is crucial for understanding the spatial and long-term temporal dynamics of fire regimes that are fundamental for designing appropriate public policies for reducing and controlling fires in Brazil

    Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning

    No full text
    Fire is a significant agent of landscape transformation on Earth, and a dynamic and ephemeral process that is challenging to map. Difficulties include the seasonality of native vegetation in areas affected by fire, the high levels of spectral heterogeneity due to the spatial and temporal variability of the burned areas, distinct persistence of the fire signal, increase in cloud and smoke cover surrounding burned areas, and difficulty in detecting understory fire signals. To produce a large-scale time-series of burned area, a robust number of observations and a more efficient sampling strategy is needed. In order to overcome these challenges, we used a novel strategy based on a machine-learning algorithm to map monthly burned areas from 1985 to 2020 using Landsat-based annual quality mosaics retrieved from minimum NBR values. The annual mosaics integrated year-round observations of burned and unburned spectral data (i.e., RED, NIR, SWIR-1, and SWIR-2), and used them to train a Deep Neural Network model, which resulted in annual maps of areas burned by land use type for all six Brazilian biomes. The annual dataset was used to retrieve the frequency of the burned area, while the date on which the minimum NBR was captured in a year, was used to reconstruct 36 years of monthly burned area. Results of this effort indicated that 19.6% (1.6 million km2) of the Brazilian territory was burned from 1985 to 2020, with 61% of this area burned at least once. Most of the burning (83%) occurred between July and October. The Amazon and Cerrado, together, accounted for 85% of the area burned at least once in Brazil. Native vegetation was the land cover most affected by fire, representing 65% of the burned area, while the remaining 35% burned in areas dominated by anthropogenic land uses, mainly pasture. This novel dataset is crucial for understanding the spatial and long-term temporal dynamics of fire regimes that are fundamental for designing appropriate public policies for reducing and controlling fires in Brazil

    Distribution of tree aboveground biomass density of cerrado <i>sensu stricto</i> vegetation in cerrado (estimated with model 11), using individual-tree data from 77 sites.

    No full text
    <p>Numbers indicate ecoregions: 1 = Alto Paranaíba, 2 = Araguaia Tocantins, 3 = Bananal, 4 = Bico do Papagaio, 5 = Chapadão do São Francisco, 6 = Depressão Cuiabana, 7 = Depressão do Parnaguá, 8 = Paracatu, 9 = Paraná Guimarães, 10 = Parecis, 11 = Planalto Central, 12 = São Francisco Velhas, 13 = Vão do Paranã. Delimitation of Cerrado biome and ecoregions was obtained from IBGE [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0196742#pone.0196742.ref059" target="_blank">59</a>] and Arruda et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0196742#pone.0196742.ref009" target="_blank">9</a>], respectively.</p
    corecore