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Abstract: Brazil has a monitoring system to track annual forest conversion in the Amazon and most
recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land
cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map
land use and land cover lack regularly updates and high spatial resolution time-series data to better
understand historical land use and land cover dynamics, and the subsequent impacts in the country
biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary
network called MapBiomas to reconstruct annual land use and land cover information between
1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth
Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated
areas, and water. These classes were broken into two sub-classification levels leading to the most
comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall
accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000
pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data
series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture
activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old
pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing
some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that
reconstructing historical land use and land cover change maps is useful for advancing the science
and to guide social, economic and environmental policy decision-making processes in Brazil.

Keywords: land use; land cover change; Landsat; random forest; time-series; Brazilian biomes

1. Introduction

Our society is highly dependent on a functional and stable land system for food production,
and to access natural resources including water, timber, fiber, ore and fuel, among other ecosystem
services and goods [1]. However, human-induced land use and land cover (LULC) changes over
the past 50 years have been altering the composition, structure and services of land ecosystems at
an unprecedented rate [2–4] As consequences, the equilibrium between land, atmospheric and ocean
systems, human welfare and wellbeing, as well as global biodiversity are at high risk [5,6].

Brazil is one of the richest biodiversity countries in the world [7] with six unique biomes: Amazon,
Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal. These biomes possess large carbon stocks
in their forest [8] and soils [9], and additionally possess the largest global reserves of freshwater [10].
On the other hand, this country is one of the world’s producers of agricultural commodities and it
has been a major contributor to LULC changes from greenhouse gas (GHG) emissions at the global
scale [11,12].

Deforestation for pasture and agriculture expansion, infrastructure development, cities, and
political and financial incentives to land occupation are the main drivers of LULC changes in
the Brazilian biomes, affecting biodiversity, water resources, carbon emissions, regional and local
climate [13]. Currently, the biomes undergoing more pressure on the original land cover are the
largest ones, the Amazon (419 Mha, i.e., 49% of the country) and Cerrado (203 Mha, i.e., 23% of the
country) [14,15]. However, the Atlantic Forest (111 Mha, i.e., 13% of the country) is the Brazilian biome
that suffered the most extensive LULC change in the past, dating back to colonial history in the sixteenth
century [16,17]. This biome is highly fragmented by roads and urban centers [18], and immersed
in a large agriculture matrix, resulting in 11.7% of old secondary forest cover (i.e., >30 years) [19].
The semi-arid Caatinga biome (84 Mha, i.e., 10% of the country), located in the northeast region of
Brazil, is considered the Brazilian biome that has been most altered by LULC change [20], being mainly
covered nowadays by secondary growth forests [21,22]. Similarly to the previous ones, the Pantanal
biome (15 Mha, i.e., 1.7% of the country) is likewise under high conversion pressure. Cattle ranching
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and sugarcane expansion are driving the suppression of its natural vegetation grassland and extensive
wetlands [23,24]. Last, but not least, the Pampa biome (17 Mha, i.e., 2% of the country), is located
in the southernmost region of the country, comprised mostly of natural grasslands with shrub trees
and rocky outcrops [25]. Cattle ranching and agriculture have altered most of the natural grassland
of this biome [26], and it has been considered a neglected biome due to inadequate protection and
conservation policies [27–29].

Spatially explicit information on the historical trajectories of LULC in Brazil is key to inform
the planning and the sustainable management of natural resources, policy formulation, among other
societal applications. Nevertheless, as consequence of governmental policies and funding focused
on the biomes that host most of the remaining Brazilian natural vegetation under threat, maps
for measuring the historical extent and intensity of LULC change often exist for the Amazon and
Cerrado biomes, and are scarce and/or lack adequate spatial and temporal resolution in the other
biomes. Examples of mapping efforts include the Probio project from 2002 by the Brazilian Ministry
of Environment, the National Inventory from 1994, 2002 and 2010 [30] and the Brazilian Institute of
Geography and Statistics (IBGE) LULC maps from 2000, 2010, 2012, 2014, 2016 and 2018. These national
mapping initiatives mostly used a combination of image pre-processing and enhancement, followed
by labeling and digitizing classification based on visual interpretation, which is time consuming and
prohibitively expensive for annual mapping and the reconstruction of long (i.e., >30 years) historical
LULC information. Global LULC products varies from coarser to fine spatial resolution (i.e., 1 km to
30 m) satellite data and cover shorter time series intervals [31–33]. Additionally, global maps have none
or little involvement of local experts in the production of LULC maps, requiring further assessment by
experts at the national level [34].

The open access of Landsat archive [35–37], the new cloud computing Google Earth Engine
(GEE) platform with machine learning algorithms [38,39], and a network named MapBiomas
(https://mapbiomas.org/), including experts in remote sensing and computing, data science, and
biomes, allowed us to reconstruct annual LULC classification at 30 m spatial resolution between 1985
and 2017. Our research network implemented image-processing algorithms in GEE to pre-process
all Landsat images and normalize them to train a random forest classifier to map LULC classes of all
biomes in Brazil. Massive cloud computing permitted the quick and automatic processing of a large set
of images covering 33 year-long time series made of annual mosaics covering the entire extension of
Brazil. The application of a cloud and cloud-shadow masks algorithms allowed to overcome Landsat
scene cloudiness limitation for mapping LULC as previously reported elsewhere [40].

The objectives of this paper were threefold. First, we aimed at presenting how we reconstructed
the annual time-series of LULC maps for all the Brazilian biomes between 1985 and 2017, by combining
Landsat data, GEE, machine learning and a network of local experts, in a concept of progressively
evolving LULC map collections. The second objective was to assess the extent, rates and main drivers
of LULC change in the Brazilian biomes between 1985 and 2017 using the LULC time-series produced.
The last objective was to present the MapBiomas image processing and classification protocol which
maps the main land cover classes separately for each biome and common cross-cutting land use
themes (i.e., pasture, agriculture, coastal zone, and urban infrastructure) followed by the integration
of the LULC map products. We then demonstrated that the proposed protocol of MapBiomas is
a step-wise learning process from local experts and feedback from users to improve the annual LULC
maps. We also discuss the current applications of this free open access dataset to science, policy and
monitoring LULC change in Brazil, as well as the remaining uncertainties and challenges of our LULC
mapping approach.

https://mapbiomas.org/
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2. Materials and Methods

2.1. Study Area and LULC Approach

Brazil is a megadiverse country, the largest in South America. Its vast territory occupies more
than 851 Mha embracing six unique biodiversity-rich biomes named Amazon, Cerrado, Caatinga,
Pampa, Pantanal and Atlantic Forest (Figure 1). These biomes have distinct characteristics in terms of
vegetation structure and composition, soil physical and chemical characteristics, water availability,
biodiversity with endemic ecosystems, climate conditions and land use activities. A long history of land
use activities has transformed the original land cover characteristics of these biomes as summarized in
Table 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 27 

 

 
Figure 1. Map of the six Brazilian biomes, as defined by the Brazilian Institute of Geography and 
Statistics (IBGE) [41]. The Coastal Zone, which was mapped as a cross-cutting theme, is distributed 
along the Atlantic coast and involves all five biomes except the Pantanal. 
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Amazon 419 
(49.29%) 

Evergreen forest, with enclaves of 
savanna, natural grassland, and 

extensive wetlands and surface water, 
with almost 20% of the forested areas 

biome cleared. 

Cattle ranching, agriculture, 
mining, logging and non-

timber forestry production. 

Atlantic 
Forest 

111 
(13.04%) 

Isolated forest fragments covering 7–
10% of the biome, mostly old secondary 

growth, surrounded by croplands, 
pasture, forest plantation, urban and 

infrastructure. 

Agriculture, cattle ranching, 
urban, forest plantation, 
artificial water reservoir. 

Caatinga 84 
(9.92%) 

Woody and deciduous forests, with at 
least 50% of the original converted.  

Agriculture, cattle ranching, 
smallholder livestock 

production, non-timber 
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Natural grassland (Campos), with 
scattered shrub and trees, rock outcrop 

formations. 
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production (in natural 

grasslands), forest 
plantation, and urbanization. 

Figure 1. Map of the six Brazilian biomes, as defined by the Brazilian Institute of Geography and
Statistics (IBGE) [41]. The Coastal Zone, which was mapped as a cross-cutting theme, is distributed
along the Atlantic coast and involves all five biomes except the Pantanal.

We produced the annual historical maps of LULC between 1985 and 2017 separately for each biome
and cross-cutting themes (i.e., pasture, agriculture, coastal zone, mining and urban infrastructure).
Then, the maps of biomes and cross-cutting themes were integrated annually. The building blocks
of the image-processing protocol to reconstruct annual LULC maps is presented in detail in the
sub-sections (Figure 2), and the methodological details for each biome and themes can be found in
the Supplementary Material (S1 and S2 Appendices). This is a key element of the MapBiomas LULC
protocol which enables the mapping of complex and heterogeneous ecosystems.
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Table 1. Land cover and land use characteristics of the Brazilian biomes.

Biome Area (Mha, %) Land Cover Predominant Land Use

Amazon 419 (49.29%)

Evergreen forest, with enclaves of
savanna, natural grassland, and

extensive wetlands and surface water,
with almost 20% of the forested areas

biome cleared.

Cattle ranching, agriculture, mining,
logging and non-timber forestry

production.

Atlantic
Forest 111 (13.04%)

Isolated forest fragments covering
7–10% of the biome, mostly old

secondary growth, surrounded by
croplands, pasture, forest plantation,

urban and infrastructure.

Agriculture, cattle ranching, urban,
forest plantation, artificial water

reservoir.

Caatinga 84 (9.92%) Woody and deciduous forests, with at
least 50% of the original converted.

Agriculture, cattle ranching,
smallholder livestock production,

non-timber forestry, and urbanization.

Cerrado 203 (23.92%)
Mosaic of savannas, grasslands and
forests, 50% of the native vegetation
cover has already been converted.

Agriculture, cattle ranching, artificial
water reservoir and timber

exploitation for coal production.

Pampa 17 (2.07%)
Natural grassland (Campos), with

scattered shrub and trees, rock outcrop
formations.

Agriculture, livestock production (in
natural grasslands), forest plantation,

and urbanization.

Pantanal 17 (1.76%) Savanna, grassland and wetland. Agriculture and cattle ranching.
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2.2. Land Use and Land Cover (LULC) Classification

Defining a classification system remains a challenge for remote sensing and land ecosystem
studies, especially for harmonizing different map products [42]. Land cover refers to the Earth’s surface
characteristics, while land use is linked to human interactions with land surfaces [43]. The MapBiomas
classification scheme is a hierarchical system with a combination of LULC classes compatible with
the Food and Agriculture Organization (FAO) [44] and IBGE [45] classification systems (Table S2).
At Level 1, there are six classes: forest (1), non-forest formation (2), farming (3), non-vegetated area (4),
water (5) and not observed (6). The forest class includes old growth mature forest (i.e., >30 year-old),
early stage (i.e., 5–15 year-old) and advanced secondary growth (i.e., 15–30 year old) forests, pristine
forests that have not undergone anthropogenic conversion, savanna woodlands, mangroves and forest
plantation. Farming constitutes a land use class for areas dedicated to growing crops and raising
livestock. We also attempted to separate farming from non-forest natural formation and non-vegetated
area at this first level, but made no attempt to separate natural forest cover from forest plantation,
which is a land use activity (Table 2 and Table S2).

Table 2. Land cover and land use classification system for MapBiomas in Brazil.

Level 1 Level 2 Level 3 Description

Forest
Natural Forest

Formation

Forest
Formation

Vegetation types with a predominance of
tree species with high-density continuous
canopy, areas that were disturbed by fires
and/or logging, and forest resulting from

natural regrowth.

Savanna
Formation

Vegetation types with a tree layer varying
in density, distributed over a continuous

shrub-herbaceous layer.

Mangrove
Dense and evergreen forest formation often

flooded by tide and associated with the
mangrove coastal ecosystem.

Forest Plantation Planted tree species for commercial use.

Non-Forest
Formation

Non-Forest Formation in Wetland

Floodplain with fluvial and lake influence,
subject to periodic or permanent flooding,

located along watercourses and in lowlands
areas that accumulate water, with

herbaceous shrub vegetation and/or
arboreal and pioneer formations,
and marshes (marine influence).

Grassland Formation

Vegetation type with a predominance of
herbaceous stratum, including patches with

a well developed shrub-herbaceous
stratum.

Salt flat

“Apicuns” or salt flats are formations often
without tree vegetation, associated to saline

and a less flooded area in the mangrove,
generally in the transition between this area

and the continent.

Other Non-Forest Formation

Natural grasslands, Savanna, Park Savanna,
Steppe Savanna, Woody-Grassland

Savanna, “Campinarana” in the Amazon
biome.
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Table 2. Cont.

Farming

Pasture

Pasture areas, natural or planted, related
with farming activity. In particular, in the
Pampa and Pantanal biomes, part of the

area classified as Grassland Formation also
includes pasture areas.

Agriculture
Annual and

Perennial Crop

Areas predominantly occupied by annual
crops and in some regions (mainly in

Northeast) with the presence of perennial
crops.

Semi-perennial
Crop

Areas cultivated with the sugarcane
plantation.

Mosaic of Agriculture and Pasture
Farming areas where it was not possible to

distinguish between pasture and
agriculture.

Non-Vegetated Area

Beach and Dune
Sandy areas, with bright white colour,

where there is no vegetation predominance
of vegetation of any kind.

Urban Infrastructure
Urban areas with a predominance of

non-vegetated surfaces, including roads,
highways and constructions.

Rocky Outcrop
Naturally exposed rocks in the terrestrial

surface without soil cover, often with partial
presence of rock vegetation and high slope.

Mining

Areas related to large mineral extraction,
with clear soil exposure due to heavy
machinery. Only areas belonging to

National Department of Mineral
Production’s (DNPM) chart (SIGMINE)

were considered.

Other Non-Vegetated Area

Non-vegetated surface areas (infrastructure,
urban areas or mining) not mapped into

their classes, and exposed soil areas (mainly
sandy soil) not classified as grassland

formation or pasture.

Water
River, Lake and Ocean Rivers, lakes, dams, reservoir and other

water bodies

Aquaculture Artificial lakes, where aquaculture and/or
salt production activities predominate

Not Observed
Areas blocked by clouds or atmospheric

noise, or with absence of ground
observation masked out from analysis.

Level 2 has 12 classes that also have a combination of LULC classes (Table 2). The Forest Level 1
class is broken down into two sub-classes: natural forest formation (1.1) and forest plantation (1.2).
Then, non-forest natural formation is divided into wetland (2.1), grassland (2.2), salt flat (2.3) and other
non-forest natural formation (2.4); farming into pasture (3.1), agriculture (3.2) and mosaic of agriculture
and pasture (3.3); and the non-vegetated area into beach and dune (4.1), urban infrastructure (4.2),
rocky outcrop (4.3), mining (4.4) and other non-vegetated area (4.5). The Water Level 1 class was not
sub-classified into the Level 2. Only the Forest class goes down to Level 3. The natural forest formation
was sub-classified into forest formation (1.1.1), savanna formation (1.1.2) and mangrove (1.1.3).

The MapBiomas LULC Classification System can be linked to other international and national
classification systems [44,45]. A detailed description of the MapBiomas LULC Classification and
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the correspondence with other systems is available in the Table S2. The classification method for
implementing the MapBiomas LULC Classification System is also hierarchical, combining the different
methods that are described below. Because of that, we defined the prevalence rules to combine the
classification results obtained with different methods in order to obtain the final LULC classes (Table 2).

2.3. Remote Sensing Dataset

The satellite imagery dataset used in the MapBiomas project was composed by the Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and the Operational Land Imager (OLI)
Landsat sensors, on board Landsat 5, Landsat 7 and Landsat 8, respectively. MapBiomas used Collection
1 Tier 1 from [46] with the original digital numbers (DN) converted to top of the atmosphere (TOA)
reflectance. The Landsat Tier 1 imagery data were already orthorectified based on ground control
points and digital elevation model. The Landsat Collection 1 Tier 1 was orthorectified accounting for
pixel co-registration and the correction of displacement errors with the pixel spatial resolution of 30 m,
and is normalized to TOA reflectance, making it suitable for LULC change analysis [47]. The Landsat
Collection used in this study was accessible and processed through Google Earth Engine [38].

2.3.1. Pre-Processing

The mapping unit adopted in the MapBiomas project was defined based on the subdivision of
the International Chart of the World to the Millionth on the 1:250,000 scale. Each tile covers an area
of 1◦30′ of longitude by 1◦ of latitude, totaling 558 tiles covering all the Brazilian biomes (Figure S1).
Mapping tiles intercepting more than one biome were processed separately, with a classification legend,
input and parameterization, specifically set for each biome and subsequently merged to the tile area in
the post-classification step (explained later on).

The first pre-processing step was to build cloud-free annual tile Landsat mosaics yearly. Cloud
and cloud shadow masks were applied to all Landsat scenes. For that, we used the temporal dark
outlier mask (TDOM) [48] algorithm and the band quality assessment (BQA) information available in
the Landsat Collection. The cloud-masked Landsat scenes, which are image data for specific dates
and geographical locations, were selected in Google Earth Engine from the available Landsat archive
and combined to produce annual temporal mosaics targeting specific periods of the year for each
biome and sub-regions. This procedure warranted that optimal spectral contrast and separability
amongst the LULC classes were obtained across the biomes. The Landsat mosaics were generated with
statistical reducers (i.e., mathematical functions in Earth Engine), including median, standard deviation,
minimum and maximum, among others. We used both Landsat mosaics and Landsat cloud-free scenes
in our LULC random forest classification approaches, as described below and in the Appendix S1.
These Landsat datasets are the basis to build input features for the classifiers, as described in the
next section.

2.3.2. Landsat Feature Space

The annual Landsat scenes produced in the pre-processing step were used to generate the feature
space (i.e., variables) used as input for the random forest classifier. All cloud-free Landsat scenes
acquired over the biomes in a given year were used to produce temporal annual mosaics with spectral
bands and index, fractions and index from spectral mixture analysis (SMA), temporal index (based
on median, min, amplitude and standard deviation reducers) and textural index. The images from
the best period of each biome (Table S3) were used to produce median images. Each biome had the
flexibility to define the optimal period of the year to build the annual mosaics, since the cloud condition
and phenological behavior of the LULC varies across the biomes. Therefore, the annual image mosaics
have a different reference period for each biome. We also tested the map accuracy with calibration
training data to assess if the period selected for building the annual mosaics was optimum to increase
the accuracy of LULC classes. Building the annual mosaics with a different time period in the year did
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not affect LULC annual change estimates because the reference period of each biome is the same over
time, allowing to build a single annual product at that level (Table S3).

After building the annual mosaics, the next step was to build the feature space for the random
forest classifier. For that, we used the compositional, spectral, temporal and textural information
extracted from the image annual mosaics and from all cloud-free pixels within the year. Fractional
information was obtained with spectral mixture analysis (SMA; Tables S4 and S5) which was also
used to calculate additional SMA indices such as the normalized difference fraction index (NDFI) [49].
The NDVI values of all cloud-free pixels of all images in each year were divided into quartiles, and then
the median values of the highest quartile were considered the wet season image and the lowest one the
dry season image. Reducers of minimum, maximum, difference and standard deviation were used in
cloud-free pixels of all images in each year to produce the temporal index. Finally, an entropy function
was applied in a 5 × 5 window around each pixel to produce the texture index in the Green band.
A total of 104 features were available for each biome to select the best features. The feature dataset
used by each biome is presented in the Supplementary Material (Appendix S1 and Table S6).

The temporal mosaics procedure described above is not optimal to separate all LULC, especially
agriculture and pasture and non-forest formations due to seasonal changes. To overcome this limitation,
some classes were classified separately, as cross-cutting themes. These classes included: pasture,
agriculture, forest plantation, urban infrastructure, and mining. Each cross-cutting theme (used
a specific classification approach with all cloud-free Landsat scenes available yearly, or a temporal
mosaic for specific intra-annual period, to highlight the seasonal change and better distinguish these
LULC classes. Additionally, the feasibility to derive the 104 variables varied temporally and spatially
due to data availability and cloud conditions. The areas affected by these factors, with less Landsat
data, generally produced poorer classification results which were corrected using the temporal filtering
approach. More information about the cross-cutting theme input images and their classification
methods are provided in the Appendix S2.

2.3.3. Random Forest Classification

We used the random forest classifier available in Google Earth Engine for LULC classification [38].
The number of trees in the random forest classifier varied from 50 to 100 iterations (Appendix S1
Table B; Appendix S2). The number of features selected was the default value for this parameter (i.e.,
mtree which is given by the square root of the number of features as defined for each biome).

For training the random forest classifier, we applied two approaches. For the Amazon biome,
we combined existing land cover maps to randomly select and automatically assign the land cover
classes to the training samples. We extrapolated the land cover class assigned to the training sample
for the years that did not have land cover maps from other sources. Image analysts inspected Landsat
color composites of these years and reassigned the correct land cover to the training samples. For the
other biomes, we built training samples for the random forest classifier using a previous MapBiomas
Collection 2.3 as a reference to identify stable land cover classes; i.e., pixels with no change in land
cover over the timespan of this map collection (2000–2016). The stable land cover classes are the ones
that did not change the pixel LULC class between 2000 and 2016. This map with stable land cover
classes was used to randomly select samples and assign the LULC class to training samples. For the
years 1985–1999 and 2017, which completes the LULC Collection 3.1 of this study, we extrapolated the
stable land cover classes, assessed possible land cover change, and kept the LULC class if no change
was observed. The cross-cutting themes also used a combination of stable samples, reference maps
and image interpretation to build their training samples. More details about the procedure to build
training samples are presented in the Appendix S1 and Table S6.

2.3.4. Post-Classification Filters and Map Integration

The final classification result for each map tile consisted of three products: (a) classification
(no post-processing), (b) classification after applying spatial and temporal filters and (c) post-filter,
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integrated classification resulting from combining with cross-cutting themes following empirically
defined prevalence orders. The first post-classification action was the application of spatial and
temporal filters to the maps generated in the LULC classification step. The application of these
filters removed classification noise and disallowable LULC class transitions. The temporal filter
was also used to fill the information gap due to the cloud. These post-classification procedures were
implemented in the Google Earth Engine platform and are described in more detail below.

2.3.5. Spatial Filter

The spatial filter segmented and indexed the classes of each collection into contiguous regions [50],
which were subsequently identified and reclassified based on the following criteria: areas less than
or equal to half a hectare (i.e., approximately 5 pixels) were reclassified based on the majority of the
neighboring classes. For instance, a patch belonging to a given class of up to 5 pixels was first identified
along with its neighboring pixels; this patch was then reclassified as the predominant class value of the
neighboring pixels. This process was applied to all segments of the LULC classes selected for filtering,
which corresponds to the minimum mapping unit of MapBiomas Collection 3.1. Spatial filters applied
in each biome and cross-cutting theme are described in the Appendices S1 and S2.

2.3.6. Temporal Filter

The temporal filter seeks to identify and correct the class transitions that are expected along a series
of consecutive years (i.e., 3 to 5), as well as to fill in pixels with no data caused by cloud cover [50].
For example, a pixel classified as non-forest in a given year ti (where i = 2008, 2009, . . . , 2015), and
forest in year ti1 and ti+1, was reclassified as forest for the year ti. Several transition rules were defined
and applied to be used in the temporal filter for each biome to deal with specific phenological and land
use transitions. Temporal filters applied to each biome and cross-cutting theme are presented in the
Appendices S1 and S2.

2.3.7. Map Integration

The biome products of digital classification after temporal filter application, for each of the 33 years
in the period 1985–2017, were then integrated with the cross-cutting themes, by applying a set of
specific hierarchical prevalence rules (Table S6). The integration process was made on a per pixel
basis. A spatial filter similar to the one described above was applied in the integrated maps to remove
the isolated classes with less than half a hectare, as well as the noise resulting from any Landsat
data misregistration.

2.3.8. LULC Transitions

Transition classes represent LULC change measured by the annual pixel-to-pixel class difference
between 1985 and 2017. A similar spatial filter described in the Section 2.3.5 was applied in the
transition maps to remove spurious isolated class transitions. The aim of the LULC transition filter is
to eliminate single pixels or streams of pixels on the border of different classes derived from the created
transition maps. The general rule applied in this filter was to remove from the transition classes’ single
isolated pixels and streams of up to five pixels along the border of transition classes.

2.4. Accuracy Assessment and Area Estimation

Accuracy assessment analysis and area estimation were performed based on ~75,000 independent
samples (named reference dataset) at the Landsat pixel level for each one of the years from 1985 to
2017 in all of Brazil (Appendix S3). These samples were generated by a stratified random sampling,
which considered 127 regular strata (resulting from the spatial aggregation of neighbors tiles from
International Charts of the World to the Millionth on the 1:250,000 scale), a confidence interval of 95%,
and a maximum standard error of 5% to establish the sample size for each stratum, following the good
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practices proposed by [51,52]. In order to increase the number of samples in heterogeneous landscapes,
we stratified the samples proportionally to six slope classes (see the Appendix S3 for details).

Each sample (i.e., Landsat pixel) was inspected by three independent interpreters, and in
case of disagreement among interpreters, a senior interpreter assigns the final LULC class
of the pixel. This evaluation was performed using the Temporal Visual Inspection web application
(TVI—tvi.lapig.iesa.ufg.br), developed by the Laboratório de Processamento de Imagens
e Geoprocessamento (Lapig).The TVI application allowed the evaluation of all LULC classes using at
least two Landsat images per year, the Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation index, precipitation time-series, and high-resolution imagery available in Google Earth.
Accessing all these datasets for each sample through a graphical user interface of TVI with satellite
image color composites to provide texture and contextual information, spectrum-temporal graphs to
assess phenology of LULC class, and higher spatial resolution imagery, allowed the interpreters to
evaluate and differentiate the LULC classes (Table 2). Additionally, all TVI interpreters were trained by
experts from each of the Brazilian biomes, in order to establish the interpretation criteria for all the
LULC classes mapped by MapBiomas.

Subsequently, we used a majority agreement rule, which considers the LULC class assigned by the
majority of the interpreters as the final one to the reference sample. Finally, a classification error matrix
was created and several metrics (i.e., global user and producer accuracies, quantity and allocation
disagreement) were calculated for each year, class and biome, following a standard good practice
protocol [51]. Then, we calculated the unbiased area estimation (using the sample weight obtained
with our reference sample dataset), classification error matrix, and estimated user, producer’s and
global accuracies, and quantity disagreement and allocation disagreement for each year, class and
biome following a standard good practice protocol [51] (see Appendix S3 for details).

3. Results

3.1. LULC Map Accuracy

We generated 33 annual LULC maps for Brazil with Landsat data from 1985 to 2017 using Google
Earth Engine at 30 m pixel resolution. First, we presented the temporal trends of the five main LULC
classes including forest, non-forest formation, farming, non-vegetated area and water (Table 3, Figure 3).
At Level 1, the LULC mapping product presented 89.13% of global accuracy with 9.21% of allocation
disagreement and 1.66% of area disagreement (Table 4). The Amazon biome had 95.13% average
global accuracy, which was the highest accuracy at class Level 1, followed by the Atlantic Forest
biome with 87.3%. The Cerrado, Pampa and Caatinga had an average global accuracy ranging from
81.4% to 80.03%. The Pantanal biome had the lowest average global accuracy at class Level 1 (73.17%).
For the class Level 2, the average global accuracy for Brazil had a marginal reduction (87.91%), with
the Amazon biome showing almost the same value (95.03%) obtained at class Level 1. The Pantanal
and the Atlantic Forest biomes showed the largest decrease in average global accuracy at class Level
2, of 7% and 4%, respectively. The Caatinga, Cerrado and Pampa had an average decrease of 1.7%
(Table 4). The overall accuracy had a standard error < 1%, implying that it did not vary over the annual
time series. The classification accuracy for each year between 1985 and 2017 is available in the Figure
S2 and Dataset S2.
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Table 3. Summary statistics for Class Level 1 for 1985 and 2017 and LULC area change between
these years.

LULC Class (Level 1)
1985 2017 Area Change

Area (Mha) Area (%) Area (Mha) Area (%) Mha (%)

Forest 600.0 70.5 539.0 63.3 −61.0 −10

Non-Forest Formation 63.6 7.5 57.9 6.8 −5.7 −9

Farming 172.0 20.3 238.0 27.9 66.0 38

Non-Vegetated Areas 2.2 0.3 3.1 0.4 1.00 44

Water 12.5 1.5 13.5 1.6 1.00 8
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Table 4. Overall average accuracy, standard error and disagreement by area and allocation at LULC
classes in Levels 1 and 2 in each biome and Brazil between 1985 and 2017.

Level 1

Region Overall Accuracy Standard Error
Disagreement

Area Allocation

Brazil 89.13% 0.07% 1.66% 9.21%
Amazon 95.13% 0.09% 3.01% 1.86%
Atlantic
Forest 87.30% 0.21% 1.47% 11.23%

Caatinga 80.03% 0.23% 1.13% 18.84%
Cerrado 81.40% 0.17% 4.71% 13.89%
Pantanal 73.17% 0.65% 15.68% 11.14%
Pampa 81.25% 0.54% 9.76% 9.00%

Level 2

Region Overall Accuracy Standard Error
Disagreement

Area Allocation

Brazil 87.91% 0.10% 4.42% 7.67%
Amazon 95.03% 0.09% 3.35% 1.62%
Atlantic
Forest 83.25% 0.32% 5.52% 11.23%

Caatinga 78.18% 0.26% 7.29% 14.53%
Cerrado 79.88% 0.22% 6.38% 13.74%
Pantanal 66.09% 0.69% 15.73% 18.18%
Pampa 79.46% 0.59% 10.96% 9.58%



Remote Sens. 2020, 12, 2735 13 of 27

We summarized the user’s and producer’s accuracy estimates by averaging them over the 33 years
timespan of this study for the entire country (Table 5). These estimates allowed to break down the
overall accuracy reported for the country level (Table 4) into class levels. For class level 1, the user’s
accuracy ranged between 61.76% and 92.54%, for non-forest formation and non-vegetated, respectively.
The lower user’s and producer’s accuracy of non-forest formation LULC classes, such as wetlands
and grasslands at class Level 2, can be explained by the spectral confusion with other LULC classes
such pasture, agriculture and water with Landsat data. Understanding the spectral confusion amongst
the LULC classes is crucial for the proper user of the MapBiomas dataset. Because of that, all the
classification error matrices are available in the Datasets S1 and S2 and we built an interactive visual tool
to explore this information in the MapBiomas dashboard (https://mapbiomas.org/en/accuracy-analysis).

Table 5. User’s and producer’s accuracy average and standard error for LULC classes Levels 1 and 2
between 1985 and 2017.

Level 1

LULC Class
User’s Producer’s

Accuracy Standard Error Accuracy Standard Error

Forest 92.41% 0.04% 94.72% 0.05%
Non-Forest
Formation 61.76% 0.15% 59.19% 0.15%

Farming 87.73% 0.10% 83.55% 0.10%
Non-Vegetated

Area 92.54% 0.49% 62.95% 0.31%

Water 88.95% 0.42% 85.40% 0.40%

Level 2

LULC Class
User’s Producer’s

Accuracy Standard Error Accuracy Standard Error

Natural Forest
Formation 92.08% 0.04% 94.77% 0.05%

Forest
Plantation 92.90% 0.52% 52.98% 0.27%

Non-Forest
Formation in

Wetland
56.46% 0.57% 53.39% 0.54%

Grassland
Formation 49.91% 0.14% 59.61% 0.17%

Other
Non-Forest
Formation

83.88% 0.42% 53.13% 0.25%

Pasture 90.63% 0.14% 75.92% 0.12%
Agriculture 81.28% 0.25% 83.25% 0.25%

Urban
Infrastructure 92.54% 0.49% 62.95% 0.31%

River, Lake and
Ocean 88.95% 0.42% 85.40% 0.40%

3.2. LULC Spatial and Temporal Trends in Brazil

In 1985, the forest class, which also includes forest plantation, secondary forest and old growth
forest with or without signs of degradation by fire, forest fragmentation or selective logging, covered
70.5% of the Brazil’s territory, with 600 Mha. The total extent of the farming class reached 172 Mha in
that year, with the second largest extent of land cover (20.3% of the territory). The minority land cover
classes in terms of extent were non-forest formation (63.4 Mha, 7.48%), followed by surface water with
12.5 Mha (1.47%) and non-vegetated area (2.17 Mha, 0.25%) (Table 3).

https://mapbiomas.org/en/accuracy-analysis
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We estimated the annual area change in the land cover classes at Level 1 and captured their
temporal trends between 1985 and 2017 (Figure 3, Table 3). The forest class was the one with the
greatest reduction in area, with a conversion of 61 Mha or 10% of forest loss between 1985 and 2017.
Non-forest formation, comprised mostly of grasslands, also had almost 10% of its areas reduced in
this period, losing 5.7 Mha. On the other hand, farming expanded by 38% with an absolute area of
66 Mha, but not all farming advanced through forested regions, as we will explain in more detail below.
The other classes, water and non-vegetated area also expanded their area relative to 1985 by 8% (1 Mha)
and 44% (0.96 Mha), respectively (Table 3). The fastest rate of annual land change happened between
1985 and 2005, for forest loss and farming and water expansion (Figure 3). The non-forest formation
and non-vegetated areas showed faster annual changes after the year 2000.

At the country level, the water class showed the lowest annual average percent change (0.17% per
year; s ± 7.12%) with a more pronounced trend towards reducing surface water between 2010 and
2017 in the Caatinga and Cerrado biomes (Figure 4B). The Caatinga biome showed the highest rate of
surface water shrinkage in the 2010s, with an annual average rate of −5.1% per year, followed by the
Cerrado biome which showed five years in this decade with surface water reduction. Disregarding
the outlier in 2011 (8.89% increase relative to 2010), the Cerrado biome showed a decreasing change
in surface water. In the Amazon biome, we also detected a slight signal of surface water reduction
in the 2010s. The Atlantic Forest and Pampa biomes also showed a minor trend towards an increase
in surface water and higher variation over the time-series period. However, surface water had the
lowest extent in the Pampa biome between 1985 and 1995. The Pantanal biome presented the highest
variation of surface water exhibiting a twenty-year harmonic cycle (1985–2005) (Figure 4; Table S7).
Since 2005, surface water has been increasing in the Pantanal biome (5% average per year).

Non-vegetated area was the LULC class with the smallest extent, but showed a rapid increase
in area from 1985 to 2017 with an average expansion rate of 1.72% per year (s ± 10.2%) in the whole
country (Figure 4B). We expected this temporal change because urban and infrastructure development
increased in Brazil in this period. We were not able to estimate the statistical factors to adjust the area
estimate of this class for the Pantanal biome because of the lack of reference data. The Amazon biome
had the lowest average annual change for this class in the entire period (0.4% per year). Moreover,
the Cerrado biome had a 2% increase per year in surface area for non-vegetated areas, and the Caatinga
and Pampa near 2.5%. The Atlantic Forest showed an overall annual increase in non-vegetated areas
with an annual average rate of 1.3% per year. The overall rate for the Amazon biome was a 0.4%
increase, with a higher variation of change along the time-series (Figure 4B; Table S7).

The farming class also expanded between 1985 and 2017 at rate of 1.7% per year (s ± 3.8%)
(Figure 4). The highest annual average rate of farming expansion was detected in the Amazon biome
(4.6% per year), followed by the Pantanal (3.5% per year). For the Cerrado, Pampa and Caatinga,
the expansion of Farming was at a lower pace, with an annual rate of 0.9%, 0.8% and 0.6% percent
increase per year, respectively (Figure 4B). However, we observed higher rates of farming expansion
between 1985 and 2005 in the Amazon, Pantanal and Cerrado biomes, at 6.7%, 5.1% and 1.3% yearly
expansion, respectively. After 2005, the annual expansion of Farming in these biomes fell to 1.2% in the
Pantanal, 1% in the Amazon, and 0.4% in the Cerrado (Figure 4A, Table S7).

The non-forested formation class showed an annual change of −0.34% per year (s ± 2.8%) between
1985 and 2017. The Atlantic Forest and the Pampa biomes showed the highest rate of shrinking with
−0.83% and −0.68% per year on average, respectively. The remaining biomes had a lower annual
average reduction of non-forested areas ranging between −0.06% per year in the Amazon and −0.2%
in the Cerrado (Figure 4B).
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Finally, the forest class diminished by 0.34% (s ± 2.76) between 1985 and 2017 at the country level.
The Pampa and the Atlantic Forest showed an increase in forest cover in this period with an average
rate of 1% (s ± 4.27) and 0.05% (s ± 0.63) per year, respectively. The other biomes had their forest cover
reduced. The fastest annual rate of forest decrease happened in the Cerrado biome (−0.6%, s ± 0.56),
followed by the Pantanal (−0.33%, s ± 1.77), Caatinga (−0.3%, s ± 0.53), and Amazon (−0.31%, s ± 0.22).
However, in absolute terms, the Amazon region has lost much more forest area than the other biomes
in Brazil (Figure 4A,B).
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3.3. The Main LULC Change in Brazil

The spatial distribution of these LULC classes in 1985 and 2017 are shown in Figure 5, which was
used for quantifying the main LULC change in this period. Breaking down these LULC classes to the
class Level 2 revealed more unique temporal trends of these classes by biome. In Figure 6, we have the
area estimate for 10 of 16 LULC classes at Level 2 (Table 2) per biome. The wetland class was mapped
only in the Pampa and Pantanal biomes and the other non-forest formation (ONFF) in the Amazon and
Atlantic Forest (Figure 6), totaling 2.9 Mha and 15.6 Mha in 1985, respectively (Table 6). These classes
combined covered 2.1% of Brazil in 1985 and 2017, and both lost 0.7 Mha in this period (Table 6).
The majority of wetland mapped lays in the Pantanal biome, and the other non-forest formation was
almost evenly split in the Amazon and the Atlantic Forest.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 27 
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Figure 5. Land cover and land use in 1985 and 2017 in the Brazilian biomes. The most obvious LULC
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In our classification scheme, the Forest Level 1 class is split into natural forest formation (NFF)
and forest plantation at the classification Level 2. The NFF is sub-classified into forest and savanna
formations (Table 2). The NFF class covered 69% (598.9 Mha) of the Brazilian territory in 1985. Between
1985 and 2017, 11% of the country’s the NFF were converted into other land cover types, resulting
in a forest loss of 65.9 Mha. Despite the relative 277% growth of forest plantation in this period,
we estimated only 6 Mha was in plantations in 2017 (Table 6). It was not possible to estimate the area of
forest plantation over the entire timespan of this study (i.e., 33 years) because of the limited reference
samples for applying the area adjustment protocol over many years, in the Amazon, Cerrado and
Pampa biome. Therefore, the area of this LULC class remains highly uncertain.

The grassland class was mapped in all biomes except in the Amazon (Figure 6). The total area
estimated of grassland in 1985 reached 45.2 Mha (5.3% of the Brazilian territory). We detected a loss of
4.4 Mha of this class between 1985 and 2017 (9.8% loss). The annual mapping uncertainty over the
time-series was high in Cerrado, and much higher in the Pampa and Pantanal biomes, and no area
estimate was obtained for the Amazon biome grasslands (Figure 6, Table 6).
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The area of agriculture increased in all biomes, except in the Pantanal, where it was not possible
to characterize its temporal trend because we were not able to estimate the annual area for the entire
time-series (Figure 6). The total area of agriculture increased from 18.9 Mha to 51.5 Mha between 1985
and 2017, representing a 172.5% expansion of 32.6 Mha (Table 6). Most of this expansion happened
in the Atlantic Forest, Cerrado and Pampa biomes, with the highest area uncertainty in the later one
(Figure 6).

The pasture class showed different annual trends in the biomes with periods of continuing
expansion (Amazon and Pantanal), stabilization after 1995 (Caatinga, Cerrado), and shrinking
(Atlantic Forest). This class was not mapped in the Pampa biome because natural grasslands area
is used for raising animals in this biome. Overall, the pasture area increased by 45.4 Mha in Brazil
from 1985 to 2017 (Table 6, Figure 6). In four biomes (Atlantic Forest, Caatinga, Cerrado, and Pampa),
143.5 Mha were mapped as either pasture or agriculture, which were assigned in the mosaicking
class (Table 6, Figure 6). This mosaic class was reduced from 55.3 Mha in 1985 to 42.7 Mha in 2017
(i.e., a loss of −22.9%). This result may indicate that it has become more feasible to reliably distinguish
pasture from agriculture in more recent years, reducing the mapping uncertainty between them.

River, lakes and ocean (RLO), as well as urban infrastructure LULC classes had an increase in area
between 1985 and 2017 of 1.0 Mha each (Table 6). The temporal variation is better depicted for the
river, lakes and ocean in the Figure 4B and the results for each biome were presented in the previous
section. The remaining LULC classes that were not discussed here are rare classes (i.e., have a small
proportion of area and reference data, such as mangrove, salt flat, beach and dune, rocky outcrop).
Considering this, we were not able to provide a reliable estimate of their area with Landsat imagery.
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Table 6. Land use and land cover change in Brazil in 1985 and 2017.

LULC Class Level 2

1985 (Mha) 2017 (Mha) Total
Change

Total Percent
Change

Min Area Adjusted Max % Area Mapped Min Area Adjusted Max % Area Mapped

Natural Forest 573.2 598.9 624.7 70.4% 507.6 533.0 558.4 62.6% −65.9 −11.0%

Forest Plantation −0.5 1.6 3.6 0.2% 2.5 5.9 9.3 0.7% 4.3 277.0%

Wetland 2.7 2.9 3.2 0.3% 1.5 2.2 3.0 0.3% −0.7 −22.9%

Grassland 31.4 45.2 58.9 5.3% 28.6 40.7 52.9 4.8% −4.4 −9.8%

Other Non-Forest
Formation 8.3 15.6 22.8 1.8% 7.6 14.9 22.2 1.8% −0.7 −4.3%

Agriculture 16.8 18.9 21.0 2.2% 49.0 51.5 54.0 6.1% 32.6 172.5%

Pasture 82.4 98.1 113.8 11.5% 109.1 143.5 177.9 16.9% 45.4 46.2%

Mosaic of Agriculture
and Pasture 32.1 55.3 78.6 6.5% 30.3 42.7 55.1 5.0% −12.7 −22.9%

River Lake and Ocean 11.2 12.5 13.8 1.5% 12.2 13.5 14.8 1.6% 1.0 7.8%

Urban Infrastructure 1.0 2.2 3.4 0.3% 2.0 3.1 4.3 0.4% 1.0 44.6%
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3.4. LULC Biome Transitions

We estimated that 63.5% of the Brazilian territory did not undergo change in its original land
cover class from 1985 to 2017, totaling 540.7 Mha (Table 7, Figure 7A). These persistent LULC classes
do not imply that there were no land cover degradation processes during the 33-year period of this
study or no land cover regeneration. Changes in their structure and/or composition, usually associated
with wood, non-timber product forest harvesting, and fires may have happened, but no effort to
detect degradation processes has yet been applied at the country level. The majority of the areas with
persistent LULC classes occurred in the Amazon biome, encompassing 40% (341.6 Mha) of the total
area in Brazil that did not show land cover change in the timeframe of this study. Our analysis showed
that 323.4 Mha in the Amazon biome, or 94.6% of the total LULC that did not change, was represented
by natural forest formation (Table 7). The Cerrado biome had the second largest area with no LULC
change (110.2 Mha; 11.8% of the entire country), of which 67 Mha were natural forest formation. In the
Atlantic Forest, the persistent land cover made up of 47.6 Mha (9.1% of the country), with nearly 50%
associated with agriculture and pasture. The Caatinga biome had 39.2 Mha of LULC classes mapped in
1985 continuing in the same classes in 2017, with 80% (i.e., 31.6 Mha) related to natural forest formation.
The Pampa and Pantanal biomes showed 0.7% for the total area relative to Brazil with no change in
LULC classes (Table 7, Figure 7A).

Table 7. Estimate of the area (Mha) of persistent land cover and land use classes in Brazil between 1985
and 2017.

Classes Amazon Atlantic Forest Caatinga Cerrado Pampa Pantanal Brazil

Natural Forest
Formation 323.4 20.7 31.6 67.0 0.7 4.3 447.7

Non-Forest
Formation 6.2 1.0 1.4 13.9 2.3 1.6 26.5

Forest
Plantation - 0.2 - 0.2 - - 0.4

Pasture 4.2 15.0 4.8 14.4 - 0.2 38.6

Mosaic of
Agriculture and

Pasture
0.1 2.6 0.5 0.3 - - 3.5

Agriculture - 5.8 0.5 3.2 1.0 - 10.5

Non-Vegetated
Area 0.1 1.0 0.1 0.5 0.1 - 1.9

Water 7.6 1.3 0.3 0.7 1.6 0.2 11.6

The remaining 36.5% (310.8 Mha) of the country area showed changes in LULC classes from 1985
to 2017. We defined five types of changes amongst the LULC mapped in this study: vegetation loss,
vegetation gain, water–land transitions, shifting land use and vegetation dynamics (Table 8, Figure 7B).

The vegetation loss totaled 102.4 Mha, representing 33% of the total area that underwent LULC
change between 1985 and 2017 (i.e., 310.8 Mha; Table 8). We discovered that most vegetation loss,
which includes forest and non-forest formations, occurred in the Amazon (41.8%) and Cerrado (33.8%)
biomes. To a lesser extent, in this category we had the following biomes: Caatinga (10.7%), Atlantic
Forest (9.2%), Pampa (2.9%) and Pantanal (1.6%) (Table 8, Figure 7).

Shifting land-use was responsible for 31.6% of the total LULC change between 1985 and 2017
(Table 8), encompassing an area of 98.3 Mha. The Atlantic Forest and the Cerrado biomes contributed
40.9% and 36.1% to this change, respectively. The Caatinga (13.7%) and Amazon (6.6%) biomes
contributed less to the shift amongst land use classes. In most cases, these changes were associated
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with farming, with agriculture replacing pasture. Finally, a shift in land use was much less pronounced
in the Pampa (2.3%) and Pantanal (0.3%).
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Table 8. Estimate of the area (Mha) of land cover and land use changes in Brazil between 1985 and 2017.

Classes Amazon Atlantic Forest Caatinga Cerrado Pampa Pantanal Brazil

Vegetation
loss 42.8 9.4 11.0 34.6 3.0 1.6 102.4

Vegetation
gain 21.5 12.2 17.1 25.8 5.6 3.9 86.1

Water-land
transitions 5.0 0.8 0.8 1.1 0.3 0.7 8.7

Shifting
land-use 6.5 40.2 13.5 35.5 2.3 0.3 98.3

Vegetation
dynamics 4.1 0.5 1.9 5.7 0.8 2.3 15.3

Vegetation gain reached an area of 86.1 Mha, or 10.1% of the Brazilian territory from 1985 to
2017. The Cerrado biome contributed to 30% (25.8 Mha) of the total area undergoing vegetation
gain, followed by the Amazon biome with 25% (21.5 Mha) (Table 8) and the Caatinga biome with
19.9% (17.1 Mha). The Atlantic Forest gained 12.2 Mha (or 12.2% of the total vegetation gain) of area
undergoing this process, with the great majority related to the newly forested region, mostly along
riparian zones. We also detected 5.6 Mha and 3.9 Mha of vegetation gain in the Pampa and Pantanal
biomes, respectively. A total of 15.3 Mha of the LULC changes in Brazil over the 33 years mapped in
this study were associated with natural vegetation dynamics (1.8% of the country size), and 8.7 Mha
(1%) with water to land transitions (Table 8, Figure 7B).
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Since we did not generate reference data to assess the accuracy of the LULC transitions presented
above, all the area estimates were based on pixel counting. Therefore, these results must be considered
as a first attempt to characterize and measure LULC change in long time series in Brazil. We have not
attempted to evaluate intermediary LULC change, which is the subject of another ongoing study.

4. Discussion

This is the first time that LULC change has been quantified in all Brazilian biomes with this degree
of spatial detail (i.e., at 30 m pixel size) using +30-year time-series Landsat data. Until now, this LULC
change information in Brazil was either restricted in space and time, covering a few biomes and short
periods of time (e.g., [53–55]), or long time-series, but focusing on deforestation in the portion of one of
the biomes [56]. Coarser spatial resolution remote sensing images have also been used to map LULC
using Google Earth Engine covering all biomes in a single year [57], and global LULC products [31] are
available with limited inputs from local experts. We did not attempt to investigate the level of spatial
and temporal agreement between the MapBiomas LULC maps with the existing regional and global
ones. This task is an ongoing effort of our research group, which requires the harmonization of LULC
classification schemes, and spatial and temporal coherence amongst the LULC maps for undertaking
the agreement analysis [58]. A recent study conducted by another research group compared their LULC
maps, produced with PROBA-V imagery at 100 m pixel size, with our MapBiomas LULC map for 2015,
resulting in a 69% agreement among the most representative LULC classes (i.e., forestland, shrubland,
grassland, pastureland, cropland, water body used in the PROBA-V study) [57]. However, this study
did not investigate which of these LULC products had the highest accuracy.

The LULC annual dataset presented in this study allowed numerous applications, such as the
estimation of vegetation gain and loss, and the understanding of land cover drivers. Between 1985 and
2017, 38% of the Brazilian territory was modified by cattle ranching and agriculture activities, as well as
infrastructure development, changing native forest and non-forest formations, indistinctly in all six
biomes. Pasture expanded by 46% in the country, mainly in the Amazon and Pantanal biomes, while
agriculture increased by 172%, mostly in the Atlantic Forest replacing old pastures and in the Cerrado
biomes converting savanna and grasslands formations. Our LULC dataset revealed that 86 Mha of the
converted native vegetation is undergoing some level of regrowth. The MapBiomas time-series also
generated that, in the Amazon biome, secondary vegetation increased 12 Mha in 2017 [59], exceeding
45.5% to the area of primary deforestation mapped by the Brazilian monitoring system (PRODES) [60].
Thus, our LULC annual dataset goes beyond the existing LULC studies and monitoring systems and
helps to fill the information and knowledge gaps in monitoring LULC dynamics in the country in the
past three decades.

We built the LULC maps of this study iterating over map collections, such as that applied to MODIS
global land cover products [33]. In the MapBiomas Collection 3.1, we had substantial improvement
in the random forest classifier and built a robust reference dataset for accuracy assessment. The first
Collection 1.0 was mainly developed to allow our research team, engineers and data scientist to port
our existing classification algorithm and optimize Google Earth Engine LULC mapping in a short
time-series (i.e., between 2000 and 2016). In the Collection 2 (which evolved until Collection 2.3),
we were able to move from empirical decision trees based on hierarchical rules defined by analysts
to a random forest machine learning algorithm. Empirical decision rules have an advantage of
better understanding the variables and rules to map LULC classes, working well with a set of small
classes [61]. However, as we increased the levels and numbers of LULC classes, empirical rules became
complex, making human decision for partitioning the data into hierarchical binary classes unfeasible.
To overcome this task, we adopted random forest in Collection 2.3 which evolved with unbiased
training and accuracy assessment into Collection 3.1, using existing LULC maps from different sources
to randomly select the training samples. Besides the iterative mapping collections, we implemented
a flexible LULC mapping protocol which allows each biome to define the feature space and samples
for training the random forest classifier (Appendix S1), as long as the biome maps can follow the
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map integration protocol to guarantee the spatial and temporal coherence along their transitional
ecotone zones.

Yet, besides the gain in information brought by MapBiomas LULC Collection 3.1, there are still
challenges and limitations to be overcome. First, overall accuracy was lower than 80% in highly
seasonal and heterogeneous biomes (e.g., Cerrado, Caatinga, Pantanal and Pampa). The Amazon biome,
with most of the land cover comprised by forest, had the highest overall mapping accuracy of 95%.
However, less predominant LULC classes had lower accuracy in all biomes. For example, the spatial
variability of native vegetation types and spectral similarity among LULC classes, such as grassland and
pasture, are challenging to separate [62], even using hyperspectral images [63]. Second, the reference
dataset used to assess the mapping accuracy was built based on the visual interpretation of Landsat
color composites, and ancillary spectra-temporal time-series and higher resolution imagery data
(when available). We were not able to estimate the classification uncertainty of our reference dataset,
which is a task in course. Third, we still need to advance in the analysis of LULC transitions and
estimate its uncertainties. In this study, we limited the LULC change analysis to a +30-year period for
the LULC classes that had lower classification errors (Tables 6–8). Further investigation is necessary to
understand the impact of LUCC classification error to estimate yearly change. Our research group
is also exploring methods to understand the frequency of a pixel change to its LULC class and the
number of times it happens [53,64]. Fourth, we recognize that the MapBiomas LULC mapping
approach is complex because it involves different data inputs and algorithm parametrization for each
biome, and some classes are mapped separately as a cross-cutting theme requiring post-classification
integration from multiple classification results. As a single random forest classification failed to include
all LULC (Table 2), it is likely that we will continue to use cross-cutting themes and post-classification
integration of several maps and class prevalence rules to compose the final LULC. Rare classes in
our classification schemes (e.g., beach and dunes, aquaculture, mining, salt flat, rocky outcrops) were
penalized by the random forest classifier and tended to be under mapped, as pointed out in global
mapping studies [33]. These rare LULC classes were impacted in our accuracy assessment analysis
as well, showing high classification errors. As an alternative to overcome this issue, we balanced the
training classes in our random forest algorithm by using published and accessible reference LULC
maps for the Amazon biome, and by adding manually sampled areas that were under mapped in the
other five biomes. However, the impact of rare classes persisted, leading us to analyze in this study the
LULC dynamics of only the eight most predominant classes (Table 6). Finally, we will also attempt to
separate agriculture from pasture in the mosaic class and improve the spatial and temporal consistency
in some periods of time series in future MapBiomas Collections.

Several studies have already been published by the MapBiomas network to better understand the
spatial-temporal LULC dynamics in Brazilian biomes focusing on specific LULC classes. For example,
surface water dynamics in the Amazon region [65], Cerrado native vegetation change [62], mangrove [66]
and pastureland dynamics and characterization over the whole country [67]. New research methods to
explore and analyze LULC trajectories were applied to the Caatinga biome with the MapBiomas LULC
time-series [68]. The Greenhouse Gas Emission and Removal Estimating System—SEEG [69] uses the
LULC annual data to estimate the GHG emissions and removals for the land use sector in Brazil, which
represents 44% of GHG emissions in 2018 (SEEG 7 available at https://seeg.eco.br/). Indeed, reducing
the LULC uncertainty of the SEEG GHG estimates was the main reason for our research group to
launch the MapBiomas Project.

All products, methods and tools of the MapBiomas Project are open access, transparent and publicly
available in the internet (https://mapbiomas.org/) for non-commercial use. With open access data, it was
possible to perfect the LULC maps with end-user feedback, which reached one hundred thousand
users in 2019. Additionally, more than one hundred peer-reviewed research articles were published
between 2017 and 2019 using the LULC maps of this project. Since the first MapBiomas Collection,
the applications of this dataset keep growing in science including, for example, the assessment of
conservation and biodiversity policies [70–73], climate change impact [74,75], and the mapping of
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human disease risks, including hantavirus [76], yellow fever [77], and Leishmania [78]. Therefore,
these LULC maps presented in this study are already contributing to better inform the scientific
community, policy makers and civil society organizations. In this study, we present an in-depth
methodology and the processes used to build the MapBiomas collections, and a rigorous assessment
of the map accuracy, which is required to support the existing and emerging scientific and societal
applications of our LULC map collections. In addition, we are also advancing in the understanding of
historical LULC dynamics in the Brazilian biomes and of the main drivers of change.

5. Conclusions

We reconstructed LULC time-series information over three decades in Brazil, based on Google Earth
Engine cloud-computing, freely available Landsat data and a collaborative network of experts willing
to share knowledge. Our LULC mapping protocol required breaking up the image classification per
biome and cross-cutting themes, followed by the post-classification map integration rules. This process
was required to account for the unique conditions of the biomes, including the phenological changes of
LULC classes, the availability of Landsat data due to cloud conditions, and the history and intensity
of land use. The accuracy assessment was used to define the optimum period of each biome using
calibration data training embedded in the random forest classifier. Classifying separately cross-cutting
classes (e.g., pasture, agriculture and urban infrastructure) was necessary to reduce spectral confusion
in the random forest. The key element of our LULC approach is the post-classification integration
protocol, which requires spatial coherence of the integrated maps along the biome boundaries.
Finally, we decided to put the LULC maps openly available prior to the scientific publications, with
a detailed description of the methodology. This allowed several scientific publications using our
LULC dataset in Brazil and abroad, and getting feedback from the data users to improve our maps.
Policy-makers are also using the LULC dataset to make, plan and assess public policies in the country.
The MapBiomas collaborative initiative is also expanding to generate new LULC products in other
countries, such as in the Pan-Amazonian countries (https://amazonia.mapbiomas.org/), Chaco region
(https://chaco.mapbiomas.org/) and most recently in Indonesia. Based on MapBiomas experience in
Brazil, involving local institutions and experts, and international partners, our LULC mapping protocol
will likely expand to other countries contributing to support science and societal applications and
better policy decisions.
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