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Abstract 

Background  The application of different approaches calculating the anthropogenic carbon net flux from land, leads 
to estimates that vary considerably. One reason for these variations is the extent to which approaches consider forest 
land to be “managed” by humans, and thus contributing to the net anthropogenic flux. Global Earth Observation (EO) 
datasets characterising spatio-temporal changes in land cover and carbon stocks provide an independent and con-
sistent approach to estimate forest carbon fluxes. These can be compared against results reported in National Green-
house Gas Inventories (NGHGIs) to support accurate and timely measuring, reporting and verification (MRV). Using 
Brazil as a primary case study, with additional analysis in Indonesia and Malaysia, we compare a Global EO-based 
dataset of forest carbon fluxes to results reported in NGHGIs.

Results  Between 2001 and 2020, the EO-derived estimates of all forest-related emissions and removals indicate 
that Brazil was a net sink of carbon (− 0.2 GtCO2yr−1), while Brazil’s NGHGI reported a net carbon source (+ 0.8 
GtCO2yr−1). After adjusting the EO estimate to use the Brazilian NGHGI definition of managed forest and other 
assumptions used in the inventory’s methodology, the EO net flux became a source of + 0.6 GtCO2yr−1, comparable 
to the NGHGI. Remaining discrepancies are due largely to differing carbon removal factors and forest types applied 
in the two datasets. In Indonesia, the EO and NGHGI net flux estimates were similar (+ 0.6 GtCO2 yr−1), but in Malay-
sia, they differed in both magnitude and sign (NGHGI: -0.2 GtCO2 yr−1; Global EO: + 0.2 GtCO2 yr−1). Spatially explicit 
datasets on forest types were not publicly available for analysis from either NGHGI, limiting the possibility of detailed 
adjustments.

Conclusions  By adjusting the EO dataset to improve comparability with carbon fluxes estimated for managed 
forests in the Brazilian NGHGI, initially diverging estimates were largely reconciled and remaining differences can be 
explained. Despite limited spatial data available for Indonesia and Malaysia, our comparison indicated specific aspects 
where differing approaches may explain divergence, including uncertainties and inaccuracies. Our study highlights 
the importance of enhanced transparency, as set out by the Paris Agreement, to enable alignment between different 
approaches for independent measuring and verification.

Keywords  Forests, CO2 flux, LULUCF, Removal factors, Transparency, Managed land proxy, Inventories, Earth 
observation, Carbon budget

*Correspondence:
Viola Heinrich
viola.heinrich@gfz-potsdam.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13021-023-00240-2&domain=pdf


Page 2 of 24Heinrich et al. Carbon Balance and Management           (2023) 18:22 

Background
Forest carbon flux estimates in the context of the Paris 
Agreement
According to the Intergovernmental Panel on Climate 
Change (IPCC) 6th Assessment Report (AR6), the Land 
Use, Land-Use Change and Forestry sector (LULUCF) 
accounted for approximately 15% of total global net 
anthropogenic CO2 emissions between 2011 and 2020 
(4.6 ± 2.0 GtCO2 yr−1) (Fig.  1) [1]. The flux, estimated 
from three global bookkeeping models, is due predomi-
nantly to forest-related activities such as deforestation, 
afforestation, reforestation, and forest management 
[1]. With an uncertainty of ± 50%, LULUCF is the most 
uncertain term in the carbon budget [2]. Prominent dif-
ferences exist in both the magnitude and sign of the 
net anthropogenic LULUCF CO2 flux between global 
land-related datasets. Earlier studies found a large dis-
crepancy between LULUCF estimates from the global 
bookkeeping models [3–5] used in the IPCC AR6 and 
the National Greenhouse Gas Inventories (NGHGIs) 
submitted to the United Nations Framework Conven-
tion on Climate Change (UNFCCC). NGHGIs are used 
to track progress under the Paris Agreement [6]. The 
latest research estimates a difference of 6.7 GtCO2 yr−1 
globally for the period 2000–2020 [7]. The NGHGIs 
reported a small net sink (about -1.9 ± 1.0 GtCO2 yr−1 

over 2000–2020) compared to the bookkeeping mod-
els reporting net emissions (about 4.8 ± 2.4 GtCO2 yr−1 
over 2000–2020) (Fig. 1). In the same period, FAOSTAT 
reports global net land use CO2 emissions of 1.1 GtCO2 
yr−1 (Fig.  1) [8, 9]. The difference between bookkeeping 
models, NGHGIs, and FAOSTAT reflects the different 
scopes of the country reporting to FAO, which focuses 
on area and biomass, and to UNFCCC, which explicitly 
focuses on carbon fluxes [10]. Moreover, a discrepancy of 
more than 5 GtCO2 yr−1 is also found between Integrated 
Assessment Models (IAM) and NGHGIs between 2005 
and 2015 [11]. These discrepancies are problematic for 
the Global Stocktake (GST), as they hamper a consistent 
comparison between countries’ future mitigation actions, 
as pledged in their Nationally Determined Contribution 
(NDCs), and IAMs scenarios consistent with the goals of 
the Paris Agreement [11, 12].

Earth Observation (EO) data have been used to help 
understand and reconcile the gap found between datasets 
used in the GST at the global [11] and country scale [13]. 
EO data supports climate policy by providing high spatial 
and temporal resolution data, and are used in NGHGI 
reporting methods [14]. EO data can also be used as evi-
dence to encourage more ambitious climate pledges by 
capturing processes currently not fully considered in 
NGHGIs, e.g. forest degradation [15, 16]. Currently, global 

Fig. 1  Global net CO2 flux due to LULUCF calculated by different datasets. Positive numbers represent a net source (emissions), negative numbers 
represent a net sink (removals). Light blue line: the average annual value of three bookkeeping models [3–5] as presented in [2].Yellow line: FAOSTAT 
includes (i) forest land converted to other land, (ii) net emissions from forest land remaining forest land, (iii) net flux from organic soils in croplands 
and grasslands, and from biomass burning [8, 9]. Black line: National Greenhouse Gas Inventories (NGHGI) include land-use change, and flux 
in managed lands [10]. Orange line: forest-only related fluxes from a Global Earth Observation (EO) dataset [17], is the sum of the gross emissions 
and gross removals in non-intact forests (mask: [45] (tropics); [23] (extra-tropics). Data from the Global EO were not available annually and represents 
the 2001 to 2019 average. The dotted lines represent the linear regression from 2000 to 2020. All trends are statistically significant (P < 0.05)
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models used in the GST do not explicitly use EO to quan-
tify temporal changes in land use/cover. Recently devel-
oped global  greenhouse gas (GHG)  flux models based 
primarily on EO data, that incorporate spatially explicit, 
empirical observations to estimate carbon fluxes, may aid 
countries’ measuring, reporting and verification (MRV) 
of their NGHGI, and potentially provide a benchmark to 
evaluate the land sink from other global models [16, 17].

A recent Global EO-based dataset developed by Harris 
et al. [17] mapped average forest-related GHG emissions 
and removals  (Fig.  1). The dataset provided one of the 
first  EO integrated, globally consistent and geospatially 
explicit assessments of forest carbon fluxes, originally for 
2001–2019 but updated through 2020. The dataset uses 
an inventory framework, following the IPCC guidelines 
and approaches used by NGHGIs. It therefore encom-
passes many of the same processes that NGHGIs are 
encouraged to consider, such as emissions and remov-
als in all the major carbon pools in “forest land remain-
ing forest land”, “forest land converted to other land”, 
and “other land converted to forest land” (see “Method-
ology”). Globally, the EO analysis found a large average 
net sink (− 6.7 GtCO2 yr−1) for 2001 to 2020, 4.8 GtCO2 
yr−1 larger than that of NGHGIs. This discrepancy per-
sisted despite adjustments made to the Global EO to 
exclude fluxes in primary forests/intact forests (Fig.  1), 
which was applied as a proxy for “unmanaged lands”, and 
are not considered by anthropogenically-focused NGH-
GIs [11]. Including EO data in the IPCC AR6 multi-data 
source comparison had the opposite effect from what 
was anticipated: rather than building consensus around a 
LULUCF flux estimate, the new data increased the range 
of reported fluxes (Fig.  1). Our study analyses the gap 
between NGHGIs and the EO data in specific countries, 
and proposes methods to reconcile and increase confi-
dence in flux estimates from the LULUCF sector.

Mind the gap: steps to reconciling land‑use flux estimates
Studies have demonstrated that variations in land-use 
flux estimates are due mainly to differing definitions of 
what is considered to be anthropogenic fluxes on man-
aged land [11]. Observational data alone are not able to 
directly distinguish between anthropogenic and non-
anthropogenic fluxes as defined by IPCC (2010): (a) 
direct anthropogenic effects (e.g., deforestation and land 
management), (b) indirect anthropogenic effects (e.g. CO2 
fertilisation, anthropogenic climate change-induced tem-
perature changes) and (c) natural effects (e.g., interannual 
climate variability).

Anthropogenic and natural effects overlap in space and 
time, and it is possible only with model-based assump-
tions to artificially separate the effects. As a pragmatic 
solution to isolate anthropogenic fluxes, the IPCC 

Guidelines for inventory methodologies developed the 
“Managed Land Proxy”. This proxy defines anthropo-
genic Greenhouse Gas (GHG) emissions and removals 
by sinks (i.e. direct and in most cases indirect anthro-
pogenic effects) as fluxes occurring on ‘managed land’, 
i.e. where human interventions and practices have been 
applied to perform production, ecological or social func-
tions [18, 19]. Each country can define “Managed Land” 
in their own way, adding further complexity to compari-
sons between datasets. Countries’ NGHGIs collectively 
consider a much larger land area as “managed” compared 
to the assumptions applied in global models [7]. While 
it is “good practice” for countries to report, and spatially 
delineate, the area of both managed and unmanaged 
lands in NGHGIs, countries only need to estimate and 
report GHG fluxes on managed land. There is no obliga-
tion to report GHG fluxes from unmanaged lands.

Additionally, each country has different capacities, 
so each inventory varies in the five UNFCCC ‘princi-
ples’ for reporting NGHGIs: transparency, consistency, 
comparability, completeness and accuracy (Additional 
file  1: Table  S1) [20]. Although the process of writing 
the IPCC guidelines is largely seen as scientific, techni-
cal and apolitical, there is “power in holding authority 
over how carbon is defined and managed” [21]. Quanti-
fying the carbon fluxes of forest, a seemingly technical 
exercise therefore also becomes politicised. This is com-
plicated by the fact that different forest carbon measure-
ments produce varying results, emphasising even more 
the need for credible MRV and understanding the differ-
ences between these seemingly standardised, quantita-
tive assessments [21]. Under the Paris Agreement [22], 
from 2024 onwards developing (“non-annex 1”) countries 
have stronger obligations regarding frequency, accuracy, 
completeness, comparability and transparency of NGH-
GIs. Although the Paris Agreement implementation and 
workflow continues to evolve and methods are constantly 
updated, adhering to these five principles will be increas-
ingly important for MRV purposes, including for the vol-
untary cooperation between countries (Article 6.4) [22].

The main reason for the gap between NGHGIs and 
global non-EO models (bookkeeping and IAMs) has 
now broadly been explained, with approximately 80% of 
the discrepancy reconciled by considering the extent to 
which each method defines the forest sink as “managed” 
and thus anthropogenic [7, 11]. Other factors play a role 
in explaining the difference, including incomplete NGH-
GIs and a simplified representation of forest manage-
ment in global models, but these factors likely partially 
counteract each other [7, 11]. Using an EO-derived map 
of intact and non-intact forest areas [23], Grassi et al. [7] 
adjusted estimates from the bookkeeping models by con-
sidering not only all direct anthropogenic effects but also 
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indirect anthropogenic effects (identified by Dynamic 
Global Vegetation Models) occurring in non-intact for-
est areas. This adjustment expanded the definition of 
managed forests initially considered by the bookkeeping 
models to better match that of the NGHGIs.

The gap between NGHGIs and Global EO estimates is 
demonstrated clearly at the global scale (Fig. 1). However, 
reasons for the discrepancy vary by country based on the 
methods of each NGHGI. While a consistent global-scale 
analysis would be informative for the Global Stocktake, 
for the purposes of MRV under the UNFCCC, and the 
transition to the Enhanced Transparency Framework of 
the Paris Agreement, the discrepancies can be under-
stood and resolved only at the country-scale [13].

Recently, numerous peer-reviewed studies and high-
profile analysis by news articles have highlighted the gap 
between GHG flux estimates at the country-scale, mostly 
in the LULUCF sector [7, 24, 25]. A Washington Post 
article found large differences between land-based flux 
estimates in Malaysia’s NGHGI. Brazil is the largest con-
tributor to LULUCF emissions (~ 25% of global LULUCF 
emissions) [6, 26]. However, key Brazilian biomes are 
also large gross carbon sinks, and Amazonia makes up 
about 8% of the total global land sink [2, 27]. Indonesia 
is the second largest contributor to LULUCF emissions, 
accounting for about 10% of global LULUCF emissions 
[2]. Brazil and Indonesia have pledged to protect and 
restore forests within their NDC and thus forests are crit-
ical to these countries to meet their climate targets [28].

We compared forest-related flux estimates from NGH-
GIs from key case study countries, Brazil, Indonesia, and 
Malaysia, with those from a Global EO-based analysis. 
Brazil’s NGHGI is regarded as one of the most complete 
inventories produced by Non-Annex 1 countries, with 
a high transparency in describing the methodology and 
making all datasets freely available. This made Brazil an 
ideal case study to compare different datasets estimating 
gross forest-related emissions and removals, including 
methodological developments for assessing the role of 
satellite data. For Indonesia and Malaysia, the land-cover 
datasets used in the NGHGIs are not publicly available 
for spatial analysis and download. Nevertheless, sum-
mary statistics in the NGHGIs enabled some analysis.

Using Brazil as the primary case study but also apply-
ing the same principles as far as possible to Indonesia 
and Malaysia this work: (i) compares estimates of forest-
related GHG fluxes from a Global Earth Observation 
dataset and NGHGIs in three countries with large areas 
of tropical forest to demonstrate the utility of EO as a 
useful verification and evaluation tool, (ii) outlines poten-
tial reasons for differences between estimates, including 
the impact of different definitions of managed forest to 
improve the credibility of forest-related anthropogenic 

flux estimates, (iii) assesses implications for IPCC meth-
ods and for countries in improving their NGHGIs by 
using EO data when producing and improving NGH-
GIs, and (iv) assesses implications for future scientific 
research and for use of EO datasets in a policy context. 
Our study does not single out specific countries to scru-
tinise their NGHGI methods and results, but rather is 
designed to improve understanding of the ways in which 
different flux datasets can be linked and the utility of 
such an exercise at the country scale, within the context 
of the GST.

Methodology
Flux datasets
Global earth observation
The Global EO dataset used here [17] is a globally con-
sistent framework that standardises key aspects of forest 
carbon inventories, including scope, definitions, assump-
tions and the level of transparency and completeness of 
the method or approach used (Table 1). The framework 
used the most recent IPCC guidelines for NGHGI [29] 
and applied NGHGI gain–loss methods to each Landsat 
pixel (~ 30 × 30  m) of forest (tree canopy > 30% in 2000 
or subsequent tree cover gain); the framework captured 
transitions to and from forest, as well as forest remaining 
forest, but did not capture non-forest-related land uses 
[17]. The framework did not differentiate between man-
aged and unmanaged forests, but the spatially explicit 
data allows for fluxes to be flexibly disaggregated. The 
framework’s initial conditions were a global map of 
aboveground biomass density in the year 2000 [30] in 
conjunction with forest extent in 2000 [31] assigned to 
different forest types and ages, including planted forests 
[32].

Activity data were based on tree cover change [31], fires 
[33], and drivers of tree cover loss [34]. The Global EO 
dataset included emissions from all carbon pools (above-
ground, belowground, dead wood, litter, soil organic 
carbon) and emissions from fires and peat drainage and 
burning. Carbon removal factors came from a variety of 
sources and were applied using a “stratify and multiply” 
approach and included carbon sequestered in above-
ground and belowground biomass. In carbon account-
ing, the term “emission factor” can also refer to the 
factor applied when calculating the carbon absorbed by 
a system (removal from atmosphere). For clarity, here we 
have opted to separate the terms “emission factor” (rate 
at which carbon is emitted to atmosphere) and “removal 
factor” (rate at which carbon is removed from the atmos-
phere). Global geospatial data were used wherever possi-
ble (e.g. a wall-to-wall map of removal factors for young, 
naturally regenerating forests based on a literature review 
[35]), and IPCC Tier 1 default values representative for 
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large-scale ecoregions were used otherwise (old-growth 
forest, old secondary forest and plantation) [29]. The use 
of the IPCC Tier 1 default values ensured standardisa-
tion across the regions, but may not be the most accu-
rate estimation at local to regional scales [35–37]. In fact, 
for NGHGI reporting, countries are encouraged to use 
higher-Tier information where feasible. The final prod-
uct was global maps of modelled average annual forest-
related GHG emissions, removals and net flux from 2001 
to 2019, but were updated to 2020 at the time of this 
analysis (V1.1).

Brazil’s National Greenhouse Gas Inventory
In the fourth National Communication (NC4) [38], Bra-
zil’s LULUCF CO2 emissions and removals were available 
annually for 1990 to 2016 (Table 1). Brazil’s NGHGI spa-
tially delineates which lands are unmanaged and man-
aged and considers temporal changes in the Land Use 
and Land Cover (LULC) types using remote sensing data 
[38]. These LULC maps are available for the periods 1994 

to 2002, 2002 to 2010 and 2010 to 2016, along with 2002 
to 2005 and 2005 to 2010 for the Amazon biome. The 
LULC maps are combined with spatially explicit infor-
mation on the carbon pools and associated fluxes based 
on field data, literature values and remote sensing. The 
information is used to produce matrices showing the car-
bon emissions and removals within managed LULC types 
and transitions.

Emissions and removals in non-managed lands are 
not reported in the flux estimates, nor are fluxes in areas 
that have been classified as secondary forests through-
out the period of analysis areas. To use the IPCC termi-
nology, no carbon fluxes are considered on “secondary 
forest lands remaining secondary forest” (Table  2). The 
same approach is applied to forest plantations remain-
ing forest plantations. Land use activities occurring 
within these categories are assumed to be in equilibrium 
e.g., shifting cultivation and harvest. The key categories 
reported include emissions and removals in managed 
old-growth forests and emissions and removals in other 

Table 1  The main driving sources in three flux datasets estimating forest-related greenhouse gas fluxes for Brazil

The three datasets are: Global Earth Observation-based (EO) dataset [17], Brazil’s National Greenhouse Gas Inventory (NGHGI) [38] and an independent in-country 
inventory-style method SEEG (Sistema de Estimativa de Emissão de Gases de efeito estufa) [43]. Driving sources, as well as input datasets and assumptions made by 
datasets are summarised here
* Method used depends on transition type e.g. deforestation is stock-difference, regrowth is gain–loss
**  Equivalent to managed old-growth forest in the NGHGI.

Driving source Global EO NGHGI-Brazil SEEG-Brazil

Version/update V1.1 NC4 9.0

time period 2001 to 2020 (whole period average) Annually for 1990 to 2016
Manually adjusted in this study to:
2001 to 2020

1990 to 2020 (annual)

IPCC method Gain–loss Gain–loss*
Stock-difference*

Gain–loss*
Stock-difference*

Activity data

 Satellite used – Landsat – Landsat &Resourcesat-1 – Landsat

 Main driving dataset – Hansen et al. 1979 [31] – RADAMBRASIL, PROBIO – MapBiomas

Spatial resolution of land use dataset ~ 30 m ~ 30 m ~ 30 m

Emission/removal factors Emissions: wall-to-wall aboveground 
biomass and soil carbon supple-
mented by wall-to-wall driver of loss 
map. Removals: various sources 
for different forest types

Country-specific (~ IPCC Tier 2/3 
methodology) data based on field 
measurements and; LiDAR and peer-
reviewed literature

Follows NGHGI

Forest types considered – Primary Forest
– Non-primary forest (old secondary 
forest)
– Young secondary forest
– Plantations (Forest plantations 
and tree crops)
– (Mangroves—excluded in this 
analysis)

– (Non-managed forests)
– Managed forest (including old 
growth forests under protection, con-
servation and indigenous lands)
– Secondary forest
– Plantations (forest plantations only)

– Protected forests**
– Secondary forest
– Plantation (Forest plantations 
only)

Forest transitions considered (land 
use and land use change)

– Forest remaining forest land
– Deforestation
– (Degradation)—considered retro-
spectively and non-spatially (Pearson 
et al. 2017) [72]
– Afforestation and reforestation

-Forest remaining forest land
– Deforestation
– Selective logging (Amazonia only)
– Afforestation and reforestation

– Forest remaining forest land
– Deforestation
– Degradation by fire
– Afforestation and reforestation
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land converted to secondary forest or forest plantations 
over the period analysed, i.e. very young secondary for-
ests/plantations, for example a pasture in 2002 that was 
detected as secondary forest in 2010 (Table 2).

The data can be viewed in a user-friendly dashboard 
and are available freely to download for detailed analysis 
following registration (www.​ccst.​inpe.​br/​cn/), ensuring 
transparency. To compare the NGHGI with the Global 
EO estimate, we only considered CO2 emissions and 
removals occurring in forest-related categories from both 
datasets, namely, “forest land remaining forest land”, “for-
est land converted to other lands”, and “other land con-
verted to forest land”. Forest classification in the NGHGI 
is the same used by the Food and Agriculture Organiza-
tion (FAO) of the United Nations [39].

Other datasets: SEEG and FAOSTAT​
While the primary aim of our study was to compare the 
GHG flux estimates from the Global EO and the NGHGI, 
for completeness and to aid our understanding of associated 
uncertainties, we also included estimates from another in-
country dataset in Brazil [40] and the FAOSTAT [9].

Brazil’s System for Estimating Greenhouse Gas Emis-
sions (Sistema de Estimativas de Emissões e Remoções de 
Gases de Efeito Estufa—SEEG) is semi-independent from 
the NGHGI and aims to produce annual estimates of 
GHG emissions in Brazil [40]. SEEG is updated using the 
latest LULC time series products from the ‘MapBiomas’ 
project as the input activity data to quantify the GHG 
flux estimates for the LULUCF sector [41] (Table 1).

The SEEG dataset follows the approach of NGHGI 
and only considers emissions and removals associated 
with anthropogenic activities, considering conservation 

and indigenous lands to be protected and thus man-
aged (Table 1). A key difference between SEEG and the 
NGHGI is that the identification of the LULC type and 
annual changes in SEEG is pixel-based, as opposed to 
the NGHGI, which is in part based on expert visual 
interpretation assessment. The SEEG methodology 
broadly uses the same emission and removal factors 
as the NGHGI [42] but additionally considers fluxes 
in “secondary forest remaining secondary forest” 
(Table 2). The gross emissions and removals within the 
LULUCF sector can be downloaded freely from the 
SEEG platform and can be filtered by (i) Biome and 
State, (ii) Land use type, (iii) Land use change type and 
(iv) Land cover type (https://​plata​forma.​seeg.​eco.​br/​
secto​rs/​mudan​ca-​de-​uso-​da-​terra-e-​flore​sta) [43]. To 
make the estimates from the SEEG comparable with 
the Global EO, we only considered CO2 emissions and 
removals occurring in forest-related categories. Pre-
vious studies have explained the differences between 
the NGHGI and SEEG, which include: differences in 
the input data, the year of land use transitions and the 
emission factors used [44]. The differences between 
these two datasets will therefore not be the focus here.

We also included estimates from FAOSTAT, which 
are not spatially explicit, but reported as countrywide 
values. FAOSTAT considers the aboveground and 
belowground carbon pools only, and the approach is 
comparable to the IPCC 2006 Tier 1 guidelines’ “stock 
change” approach [34]. We extracted the average for-
est-related CO2 flux for the period 2001 to 2020 by con-
sidering the categories ‘Forestland’ to represent ‘forest 
land remaining forest land’ and ‘Net Forest conversion’ 
to represent ‘forest land converted to other land’ [9].

Table 2  Consideration of removals in different forest types by three flux datasets to estimating forest fluxes

Forest types used in the Global Earth Observation (EO) dataset [17] and an independent estimate in Brazil—Sistema de Estimativas de Emissões e Remoções de Gases 
de Efeito Estufa (SEEG) have been aligned according to the IPCC LULUCF reporting categories and are compared to the Brazilian National Greenhouse Gas Inventory 
(NGHGI)
* Removals in this category are available but were not considered following a series of adjustments
** Removals in this category are included by the Brazilian NGHGI and SEEG but tree crops are considered in the cropland category rather than forest land

Removals in… IPCC category Global EO Brazilian NGHGI Brazilian SEEG

Non-managed old-growth Forest land remaining forest land (✓)* ✗ ✗
Managed old-growth Forest land remaining forest land ✓ ✓ ✓
Secondary forest Forest land remaining forest land ✓ ✗ ✓
Secondary forest Other land converted to forest land ✓ ✓ ✓
Plantation (forest plantation) Forest land remaining forest land ✓ ✗ ✗
Plantation (forest plantation) Other land converted to forest land ✓ ✓ ✓
Plantation (tree crops) Forest land remaining forest land (cropland 

remaining cropland)
✓ (✗)** (✗)**

Plantation (tree crops) Other land converted to forest land (other 
land converted to cropland)

✓ (✓)** (✓)**

http://www.ccst.inpe.br/cn/
https://plataforma.seeg.eco.br/sectors/mudanca-de-uso-da-terra-e-floresta
https://plataforma.seeg.eco.br/sectors/mudanca-de-uso-da-terra-e-floresta
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Estimates of GHG fluxes from different datasets
The Global EO dataset provides the emission and remov-
als estimates as a flux per hectare in a wall-to-wall map 
(~ 30  m resolution). The data can be aggregated within 
different geographic boundaries by considering the total 
area of the pixels and associated fluxes within. Neither 
the NGHGI nor the SEEG provide spatially explicit infor-
mation on the emissions and removals, but the input 
LULC dataset for SEEG (MapBiomas) and the NGHGI 
are spatially explicit. These were used to compare spatial 
overlap of land considered as forest in Brazil between the 
various approaches, specifically “managed forest” by the 
NGHGI (Table 1). The NGHGI managed land maps ena-
bled us to extract the gross emissions and removals of the 
Global EO by forest types for greater comparability with 
the NGHGI. We focused on CO2 forest-related emissions 
and removals in Brazil, excluding non-CO2 gases.

Given the shorter period covered by the Brazilian 
NGHGI (2002 to 2016) (Table  1), we modified the esti-
mates of the NGHGI to account for the temporal dif-
ferences. This was important given the high emissions 
associated with forest loss in the early 2000s [43]. Using 
the annual SEEG data, we calculated the fractional dif-
ference between average gross fluxes over 2001 to 2020 
(the period available for the Global EO) and 2002 to 2016 
(the period available for the NGHGI). We then multiplied 
the fractional difference by the 2002 to 2016 NGHGI esti-
mates, both at the biome and country scale, such that the 
approaches and the estimates were comparable over a 
common time-period (Additional file 1: Table S2).

Adjustments to the global EO forest‑related flux to make it 
comparable to the other approaches in Brazil
The Global EO data does not differentiate between man-
aged and unmanaged forests. To limit the Global EO data 
to the managed forest fluxes reported by the NGHGI and 
SEEG, we analysed the impact of different adjustments to 
what might be considered “anthropogenic” forest-fluxes 
within the Global EO approach:

•	 No adjustment—We extracted all Global EO gross 
CO2 emissions and removals occurring within the 
country boundary of Brazil and compared this esti-
mate with the NGHGI and SEEG, which consider 
emissions occurring on managed lands only (Table 3).

•	 Adjustment 1—We applied a similar approach to 
Grassi et al. [7]. However, instead of using an intact-
forest mask, we used a primary forest mask for the 
year 2001 as a proxy to exclude removals in non-
managed lands [45], as this dataset was already inte-
grated within the framework of the Global EO data-
set (Table  1). Additionally, we considered all CO2 

emissions in the territorial boundary of Brazil instead 
of only in the non-primary forests to include post-
2001 forest cover losses and associated emissions in 
these areas (Table 3).

•	 Adjustment 2a—We applied the 2016 LULC map 
from the NGHGI to the Global EO map considering 
CO2 emissions and removals occurring on all man-
aged lands as defined by the NGHGI (both forest and 
non-forest) (Table 3).

•	 Adjustment 2b—We considered the gross CO2 emis-
sions occurring on all managed lands (as Adjustment 
2a). However, we only considered the gross removals 
in managed forests as defined by the NGHGI in 2016. 
The distinction allowed us to understand if there 
were any differences in the extent of forest land used 
by the NGHGI and Global EO and the impact this 
would have on the flux estimates (Table 3).

•	 Adjustment 2c—A final adjustment was made in 
addition to Adjustment 2b. It followed the approach 
used by the NGHGI of excluding removals in “sec-
ondary forest remaining secondary forest” or remov-
als in “plantations remaining plantations” (Table  2). 
We excluded these categories, or those as closely 
matching these categories, in the SEEG and Global 
EO. In the SEEG dataset, we excluded removals 
occurring in “secondary forest remaining secondary 
forest”. In the Global EO, we considered old second-
ary forests (> 20 years old) to represent the IPCC cat-
egory “secondary forest remaining secondary forest” 
and thus excluded removals in old secondary forest 
areas. We also excluded gross removals in plantation 
areas that did not experience any forest loss from 
2001 to 2020, according to the dataset used by the 
Global EO [31], to represent “plantations remaining 
plantations”.

Evaluation of the removal factors and forest types
In addition to evaluating the discrepancy attributable to 
managed forest area, we considered differences in the 
areas of forest types and associated carbon removal fac-
tors used in each approach. We identified the removal 
factors used for different forest types from the spatial 
dataset of the NGHGI [46]. The NGHGI uses peer-
reviewed data available for individual biomes [47]. The 
SEEG uses the same removal factors as the NGHGI and 
so were not included in the comparison. We calculated 
the modal removal factor used by the Global EO dataset 
for each forest type (Table  1) to be compared with the 
NGHGI biome-specific removal factors.

The forest types used by the NGHGI (Table 1) are avail-
able spatially explicitly within the LULC maps for availa-
ble years in the NGHGI [46]. The forest types used by the 
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SEEG are from the MapBiomas dataset [48]. MapBiomas 
provides pre-processed annual data on deforestation and 
secondary vegetation, which can be combined with their 
annual LULC map to obtain a forest type map in 2020. 
The forest types used by the Global EO were sourced 
from the various datasets, and included old-growth for-
est, old secondary forest (> 20 years old), young second-
ary forest (< 20 years) and plantations (Table 1) [17].

Assessing comparability of fluxes with high uncertainty
In the tropics, the Global EO method estimated a propa-
gated standard deviation of 45% and 110% for the gross 
emissions and removals, respectively [17]. The high 
removals uncertainty was driven by very high uncertainty 
in Tier 1 removal factors [17]. Brazil’s NGHGI reports 
an uncertainty of 32% for their estimate of LULUCF 
CO2 emissions and removals [47]. Given the high levels 
of uncertainty, using the traditional statistical method 
of determining if error bars overlap to assess the signifi-
cance of the results would not be a very useful metric, as 
the estimates and their associated uncertainties would 
always overlap. Comparing the results from multiple 
approaches, e.g., SEEG and FAOSTAT, provides a clearer 
understanding of the relative uncertainty.

Application of the analysis in other countries
A detailed analysis, like the Brazilian case study, was not 
possible for Indonesia and Malaysia as the LULC maps 
used as a basis for the NGHGIs are not publicly and read-
ily available for download and interactive analysis from 
any official government website.

Indonesia’s most recent NGHGI in the third Biennial 
Update Report (BUR3) includes tabular annual LULUCF 
flux and area change data from 2000 to 2019 [49]. Data 
for Malaysia is from their BUR4, covering the period 1990 
to 2019 [50]. Given that the Global EO is only available as 
an average value for 2001 to 2020, we extended the emis-
sion and removals value of both NGHGIs for 2019 to rep-
resent 2020 and then applied the 2001 to 2020 average for 
a more equal comparison. Key tree crops such as oil palm 
and acacia are considered agricultural croplands in the 
NGHGI of both countries; using a global plantation data-
set [32], we excluded these tree crop plantations from the 
Global EO net flux estimate in our comparison (similar 
to Adjustment 2c made in Brazil). As far as possible, we 
excluded fluxes not linked to forest transitions. For the 
time series data in Malaysia fluxes are only reported in 
the main LULUCF categories, and so we assumed all 
emissions within the category “Settlements” were due to 
deforestation (Additional file  1: Table  S4). The assump-
tion results in a small higher attribution in the database 
compared to the inventory because there is a small con-
tribution from the conversion of cropland to settlement 
that we cannot disaggregate in the time series provided 
by the NGHGI.

Unlike Brazil, Indonesia and Malaysia do not explicitly 
apply the managed land proxy, and we therefore consid-
ered all lands within their national boundaries to be man-
aged. Thus, Global EO emissions and removals within the 
entire boundary of the respective countries were consid-
ered in comparison with the NGHGI. Given the impor-
tance of peat fire and peat decomposition emissions in 

Table 3  The main adjustments made to align the Global EO forest definitions with the Brazilian National Greenhouse Gas Inventory 
(NGHGI)

Adjustments have been broken down into gross removals (R)  and gross emissions (E) in different forests type and how these are considered according to the IPCC 
categories. Ticks indicate that the flux was included in the adjustment, crosses indicate that the flux was excluded in the adjustment

Removals (R)/emissions (E)
Flux in…

IPCC category No adjustment Adjustment 1 Adjustment 2a Adjustment 2b Adjustment 2c

Primary forest Approx. equal to forest land 
remaining forest land

R: ✓
E:✓

R: ✗
E:✓

R: NA
E: NA

R: NA
E: NA

R: NA
E: NA

Non-managed old-growth Forest land remaining forest 
land

R:✓
E:✓

R:NA
E: NA

R:✗
E:✗

R:✗
E:

R:✗
E:✗

Managed old-growth Forest land remaining forest 
land

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

Secondary forest & plantation Forest land remaining forest 
land

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✗
E:✗

Secondary forest & plantation Other land converted to forest 
land

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

Plantation (tree crops) Cropland remaining cropland R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✗
E:✗

Plantation (tree crops) Other land converted to crop-
land

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✗
E:✗

Other managed land Forest land converted to other 
land

R:✓
E:✓

R:✓
E:✓

R:✓
E:✓

R:✗
E:✓

R:✗
E:✓
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these two countries, which include non-CO2 emissions, 
for Indonesia and Malaysia we considered all GHG emis-
sions from all flux datasets. Both Indonesia [49] and 
Malaysia [50] report emissions and removals in key IPCC 
categories similar to those outlined in Table 2. The stated 
uncertainties of Indonesian and Malaysian NGHGIs are 
about 14% and 15%, respectively, when excluding the 
LULUCF sector. These values increase to 20% and 57% 
for Indonesia and Malaysia, respectively when LULUCF 
is included. LULUCF is therefore a key source of uncer-
tainty in these two countries [49, 50].

Results
Making the extent of managed land more comparable 
for flux estimates in Brazil (Adjustments 1, 2a, 2b)
Assuming all forest gross emissions and removals within 
the country boundary of Brazil were considered as man-
aged (No adjustment), the Global EO net flux would be 
− 0.2 GtCO2 yr−1, a small sink from 2001 to 2020 (Fig. 2: 
1st bar). Over the same period, the other flux datasets, 
the NGHGI, SEEG and FAOSTAT, report a net source 
of 0.8  GtCO2  yr−1, 0.6  GtCO2  yr−1, and 0.7  GtCO2  yr−1, 
respectively (Fig. 2: bars 5 to 7). We adjusted the extent of 
the managed land definition in the Global EO dataset to 
make it more comparable with the NGHGI and other 
flux datasets, and recalculated the forest flux (Fig. 2).

When considering gross emissions on all lands in the 
country boundary and only removals occurring in non-
primary forest lands in the Global EO dataset (Adjust-
ment 1) (Fig.  3a), the forests become a net source of 
0.5  GtCO2  yr−1 (Fig.  2: 2nd bar). While the Global EO 
net flux is only about a third lower than the NGHGI, 
the gross emissions and removals both remain higher. 
The differences likely arise because the spatial extent of 
these forest types is not similar in Brazil (Fig. 3a and c). 
Spatially, the non-primary forest lands only overlap with 
11% of managed forests in the NGHGI (Additional file 1: 
Table S3). When aggregated, the total “non-primary for-
est” area (507 Mha) is very similar to the NGHGI “man-
aged forest” area (397 to 484  Mha), emphasising the 
importance of spatial analysis when considering proxies 
for managed forests (Additional file 1: Figure S1).

We applied the NGHGI spatial mask of all managed 
land (Fig. 3b) to the Global EO flux dataset, which yielded 
a net forest flux of 0.1  GtCO2  yr−1, making it a small 
source (Fig. 2: 3rd bar) (Adjustment 2a). Gross emissions 
are very similar to other datasets, with the estimate from 
the Global EO being 0.1  GtCO2  yr−1 smaller compared 
to the NGHGI. Gross removals remain ~ 0.6 GtCO2 yr−1 
higher than the NGHGI. This suggests that deforesta-
tion areas and emissions factors are similar in Brazil’s 
NGHGI and the Global EO under this adjustment, and 
that most of the difference is due to differences in forest 

Fig. 2  Adjustments to the Global Earth Observation (EO) forest-flux estimate to increase comparability with other datasets for Brazil. Bars 
denote the average annual gross emissions/removals and black points and associated text denote the net forest carbon fluxes over the period 
2001 to 2020. The left panel shows the impact of adjustments made to the Global EO dataset [17] when considering managed forest/land 
to align with the definitional approach of other datasets. Non-PF refers to Non-Primary Forest. Right panel shows the other flux datasets, namely 
the National Greenhouse Gas Inventory (NGHGI) of Brazil [38], SEEG-Brazil [43] and FAOSTAT [9] for Brazil. Note the original time-period for NGHGI 
was 2002 to 2016, and values have been adjusted to reflect the period 2001 to 2020 (see “Methodology”). Uncertainty measures have been 
excluded from the figure for clarity due to the high uncertainty associated with all flux datasets (see “Methodology”)
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classification and removal factors applied in managed 
forests.

With an additional Global EO data adjustment to con-
sider removals occurring only within “managed forest” as 
defined by the NGHGI but still include emissions from 
all managed land (Fig.  3c), the net flux was a source of 
0.4 GtCO2 yr−1 (Fig. 2: 4th bar) (Adjustment 2b). Despite 

the same definition of managed forest, the gross remov-
als flux of the Global EO data is two fifths larger than the 
NGHGI.

When we disaggregated Adjustment 2b at the biome 
scale, differences between the flux datasets became more 
apparent (Fig. 4). In Amazonia, the biome with the big-
gest contribution to the net flux (69% to 83%), the gross 

Fig. 3  Land cover maps showing the extent of managed/unmanaged lands according to definitions of different datasets. The datasets are a Global 
Earth Observation (EO) dataset and the Brazilian National Greenhouse Gas Inventory (NGHGI). a is the extent of primary (~ old growth) forest 
and non-primary forest used by the Global EO dataset [17]; b the regions classed as managed and non-managed areas according to the Brazilian 
NGHGI in 2016 [38]; and c are the same regions seen in b of managed land split up according to managed forest and other managed lands

Fig. 4  Average forest carbon flux estimates from different datasets over the period 2001 to 2020 across the Brazilian biomes. Bars denote 
the average annual gross emissions/removals and black points and associated text denote the net forest carbon fluxes over the period 2001 
to 2020. All methods only consider removals in managed forest lands. The Global Earth Observation (EO) [17] values are based on the Adjustment 
2b—i.e. using the NGHGI managed forest lands [38] to extract area and removals. Black points are the net flux over the period of analysis. Note 
the original period for NGHGI was 2002 to 2016, and values have been adjusted to reflect the period 2001 to 2020 (see “Methodology”). Percentages 
in brackets above each panel represents the percentage contribution of each biome to Brazil’s total net flux over the period. The range represents 
the lower and upper contribution amongst the three presented methods. Note varying scales on Y-axis
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emissions in the Global EO (0.8  GtCO2  yr−1) are very 
similar to the NGHGI (0.9  GtCO2  yr−1). However, gross 
removals are 1.5 times lower in the NGHGI. In the 
Cerrado and Atlantic Forest, which together make up 
approximately 11% to 34% of the net flux, gross removals 
are up to two and three times higher, respectively, in the 
Global EO compared to the NGHGI (Fig. 4). Given that 
these comparisons only included gross removals in man-
aged forests for the Global EO data, we could not rec-
oncile the remaining differences observed at the biome 
and country scale by only considering the extent of forest 
cover and whether it is managed forest or not (Figs. 2 and 
4).

We found considerable spatial differences when com-
paring the extent of forest cover in the Global EO and 
NGHGI datasets (Fig.  5a, b). The largest differences are 
outside of the humid forest-dominated Amazon biome. 
In the Atlantic Forest, the other key humid forest biome, 
only 35% of the total potential forest area (the areas con-
sidered as forest in either or both datasets) was classified 
as forest cover in both datasets, providing some under-
standing of the observed flux differences. Across the 
other four biomes, which are not dominated by humid-
forest cover, the area considered to be forest is higher in 
the NGHGI. These regions were not considered forest in 
the Global EO study as their tree canopy cover per pixel 

was less than 30%. The NGHGI does not define such a 
threshold and applies the FAO classification [38].

Relative contribution of different forest types to gross 
removals in Brazil
Following Adjustments 2a and 2b, we found that most 
of the discrepancy between forest fluxes was in the gross 
removals component. To explore potential reasons for 
this discrepancy, we disaggregated the removals flux 
according to forest types included in each flux data-
set and the area occupied by each forest type in 2020 
(Table  4). The difference in area occupied versus rela-
tive gross removals of respective forest types also varies 
across the six biomes (Additional file  1: Figures  S3 and 
S4). The reasons for differences in both area and gross 
removals are interconnected and difficult to untangle.

According to the NGHGI, plantations occupy an 
area of approximately 11 Mha and have a gross remov-
als flux of − 0.08  GtCO2  yr−1. According to the Global 
EO estimate, plantations occupy about two-thirds of 
this area (6.8  Mha) but estimated removals in planta-
tions are more than double compared to the NGHGI 
estimate (− 0.19  GtCO2  yr−1) (Table  4). This can partly 
be explained by the fact that the NGHGI and SEEG do 
not consider removals in “plantations remaining plan-
tations” (Table  2). Furthermore, tree plantations such 

Fig. 5  Forest cover extent according to the Global EO dataset and Brazil’s NGHGI. Data is shown spatially (a) and aggregated by biome (b). The 
forest cover relates to the year 2000 for the Global EO [17] and 1994 for NGHGI dataset [38]. The year 1994 for the NGHGI was chosen as the data 
is not available annually. The Y axis in b represents the maximum forest coverage by combining both datasets, removing areas considered 
non-forested areas in both datasets
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as rubber, acacia and oil palm are included within for-
est flux estimates in the Global EO dataset, whereas, in 
the NGHGI and SEEG, they are considered as cropland 
and are, therefore, not included in forest-related remov-
als (Table 2). Given that we adjusted the Global EO gross 
removals to consider only “managed forest” areas accord-
ing to the NGHGI (Adjustment 2b), the relative contribu-
tion to both the area and gross removals of tree crops to 
the final adjusted Global EO is small (Additional file  1: 
Figure S2).

The Secondary Forest area in the SEEG estimate 
(8547  Mha) is two-thirds smaller than the NGHGI 
(21,877 Mha), yet gross removals are three times higher 
in SEEG (− 0.16  GtCO2  yr−1), compared to the NGHGI 
(− 0.05  GtCO2  yr−1). The difference can partly be 
explained by the fact that the SEEG considers removals 
in “secondary forest remaining secondary forest” but the 
NGHGI does not (Table  2). Secondary forest removals 
in the Global EO are also three times higher than in the 
NGHGI, despite occupying a similar total area (Table 4). 
Across the three datasets, the area of old-growth forest is 
approximately the same (~ 20 Mha), and the gross remov-
als are a third larger in the Global EO (− 0.4 GtCO2 yr−1) 
compared to the NGHGI and SEEG (~ 0.3  GtCO2  yr−1) 
(Table 4), but within the uncertainty of the NGHGI data-
set (32%—see “Methodology”).

Reconciling the difference in gross removals between flux 
datasets in Brazil (Adjustment 2c)
We made a final adjustment to the Global EO data 
(Adjustment 2c) by excluding older plantation and sec-
ondary forest areas (Fig.  6). This adjustment accounted 
for the fact that the NGHGI treats fluxes within these 
categories as net zero (see “Methodology”, Table 2). Con-
sidering this final adjustment, the difference between 

the NGHGI and Global EO/SEEG is halved compared 
to Adjustment 2b. The NGHGI net flux remains higher 
(0.81 GtCO2 yr−1) but only by 28% and 10% for the Global 
EO (0.58  GtCO2  yr−1) and SEEG (0.72  GtCO2  yr−1), 
respectively (Fig. 6), the smallest net difference compared 
to any of the previous adjustments applied (Fig. 2).

Explaining the remaining discrepancy: removal factors 
and forest type
There are a few reasons why a gap between the Global 
EO and other flux datasets remains after Adjustment 
2c despite considering the same areas of managed for-
ests and associated fluxes; each flux dataset used differ-
ent removal factors and spatial extents of forest type. By 
comparing the removal factors and forest types used in 
the various datasets, we can explore the remaining dis-
crepancies without changing the methodology used by 
the flux datasets.

Looking at the differences in removal factors used for 
old-growth forests across the Brazilian biomes, which 
make up 55–70% of the gross removals flux (Table 4), we 
see that IPCC Tier 1 removal factors used by Global EO 
dataset are larger compared to the NGHGI (Table 5). In 
Amazonia, the removal factor used by the Global EO is 
a fifth higher than the NGHGI removal factor (Table 5). 
This helps to explain the higher gross removals in this 
forest type across the country (Table  4) and regionally, 
e.g., in Amazonia (Additional file  1: Figure S4). In the 
other biomes, the removal factors are higher, by between 
20–850% (Table  5). However, the relative contribution 
of old-growth forest carbon removal to the total gross 
removals is considerably less than Amazonia (Additional 
file 1: Figure S4). The results highlight the impact of using 
more region-specific, or “higher-Tier” emission/removal 
factors to improve assessment accuracy.

Table 4  The 2020 area of different forest types and associated carbon removal flux according to different datasets in Brazil

The carbon removal component is for the average annual removal flux for the period 2001 to 2020. For an explanation of different data sources see “Methodology”. For 
the National Greenhouse Gas Inventory (NGHGI) [38] only pixels in the managed forest area outlined in NC4 were used (green regions in Fig. 3c)
* As the NGHGI is only available up to 2016, numbers for the NGHGI have been adjusted by multiplying by the fractional difference in the area/gross removals of each 
forest type in 2016 and 2020 according to SEEG (MapBiomas) SEEG-Brazil [43]
** This value also includes selective logging areas and gross removals from Amazonia
*** These values are based on Adjustment 2b—i.e., using the NGHGI managed forest lands to extract area and removals in the Global Earth Observation (EO) [17]

Forest type Global EO*** NGHGI-Brazil SEEG-Brazil

Area (2020) 
(1000 ha)

Gross removals 
(GtCO2 yr−1)

Area (~ 2020)* 
(1000 ha)

Gross removals* 
(GtCO2 yr−1)

Area (2020) 
(1000 Mha)

Gross 
removals 
(GtCO2 yr−1)

Managed old-growth 195,954  − 0.42 220,158 − 0.32 217,702 − 0.31

Secondary forest 23,998 − 0.16 21,877** − 0.05** 8547 − 0.16

Plantation 6779 − 0.19 11,144 − 0.08 6311 − 0.003

Other land 31,732 – 5284 – 25,903 –

Total 258,463 − 0.77 258,463 − 0.45 258,463 − 0.48
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The removal factors in forest plantations are gen-
erally larger in the Global EO method, compared to 
the NGHGI, with a range of 9.5% to 59% (Table 6). In 
young secondary forests, those regrowing for less than 

20  years, the Global EO average removal factors are 
also generally larger, between 29 and 543% (Table 6).

As the NGHGI does not include removals in ‘secondary 
forest remaining secondary forest’, it only uses removal 

Fig. 6  Adjusted comparison of the average annual forest carbon fluxes between different flux datasets for 2001 to 2020. Panels are split 
up across the six biomes of Brazil (a) and across the whole country (b). Bars denote the average annual gross emissions/removals and black 
points and associated text denote the net forest carbon fluxes. The three flux datasets are the Global Earth Observation (EO) [17], the Brazilian 
National Greenhouse Gas Inventory (NGHGI) [38] and the independent estimate (SEEG) [43]. Adjustments to the Global EO data exclude gross 
removals in ‘Forest Land remaining Forest Land’ (FL → FL) in plantations and secondary forest (dashed areas) in the net flux calculation. The net 
flux is therefore only comprised of: FL → FL in managed old-growth forests; Other Land converted to Forest Land (OL → FL), namely secondary 
forest and Plantation areas. All datasets either only consider removals in managed forest lands or have been adjusted such that only these areas 
are considered. Black text refers to the adjusted net flux over the period of analysis. Note the original time-period for NGHGI was 2002 to 2016, 
and values have been adjusted to reflect the period 2001 to 2020 (see “Methodology”). The values for the Global EO are based on Adjustments 2a to 
2c—i.e., using the NGHGI managed forest lands to extract area and removals in the Global EO and then excluding the aforenamed categories (see 
“Methodology”). Note the different scales in the Y-axis

Table 5  Old-growth Forest removal factors used by different flux datasets and disaggregated by biomes in Brazil

For all datasets, values include above and below ground carbon. The National Greenhouse Gas Inventory (NGHGI) and SEEG) [38] applied a single, biome-specific, 
removal factor for each biome. The calculated modal removal factor in each biome for the Global Earth Observation (EO) dataset [17] (see “Methodology”) is shown. 
Values in brackets indicate old-growth removal factors also used but where the associated ecozone did not account for a large area within the biome. In the Pampa 
biome the Global EO did not detect any old-growth (primary forest) areas and only old secondary forest (Old SF) regions were identified

Biome NGHGI and SEEG (Mg C ha−1 yr−1) Global EO (Mg C ha−1 yr−1) Percentage difference 
(global EO/NGHGI) (%)

Amazonia 0.48 0.59 (0.24) + 23

Atlantic Forest 0.44 0.59 (0.24) + 34

Cerrado 0.2 0.24 (0.59) + 20

Pantanal 0.2 0.24 + 20

Pampa 0.44 NA (0.59 = Old SF) + 34

Caatinga 0.1 0.95 + 850
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factors applicable for younger (< 20 years) secondary for-
est (‘other land converted to forest land’). The Global EO 
product does, however, distinguish between old second-
ary and young secondary forests. All forested regions 
not identified as primary forests, having tree cover 
gain, plantations, or mangroves in 2000 are classified 
as ‘old secondary forests’ (> 20  years). The appropriate 
removal factors are then used according to the updated 
IPCC guidelines [42]. The average removal factors of old 
secondary forest in the Global EO are lower than the 
NGHGI young secondary forests removal factors, but 
higher than old-growth forests ones (Table 6).

The other remaining discrepancy, related to the spa-
tial extent of forest types across the three flux datasets, 
will also dictate the type of removal factors applied. At 
the country-scale, we quantified differences in the clas-
sification of forest type between the datasets (Fig. 7). We 
found the most noticeable difference in the classification 
of managed old-growth forests in the NGHGI and SEEG 
and ‘secondary forest remaining secondary forest’ in the 
Global EO. Here, 65% and 85% of the pixels classified 
as Secondary Forest (Forest land remaining forest land, 
FL → FL) by the Global EO method were classified as 

managed old-growth forest by the NGHGI and the SEEG, 
respectively (Fig.  7). Of the forest-cover types, the clas-
sification of managed old-growth (FL → FL), plantations 
remaining plantations (FL → FL) and other land con-
verted to forest land (OL → FL) were the most consist-
ent across the three datasets, with up to 98% consistency 
between the Global EO and the NGHGI.

The differences in removal factors and forest types used 
by each flux dataset highlights the individual approaches, 
boundary conditions and methodological priorities. We 
therefore could not reconcile the flux further without 
entirely re-doing the work of each separate flux dataset. 
The remaining differences in the flux between the Global 
EO (0.58  GtCO2  yr−1), NGHGI (0.81  GtCO2  yr−1) and 
SEEG (0.72  GtCO2  yr−1) (Fig.  6) give a measure of the 
uncertainty of gross and net flux estimates for forests in 
Brazil.

Differences in the key carbon pools with implications 
for gross emissions in Brazil
Differences in the major carbon pools and how the vari-
ous datasets handle deforestation and degradation will 

Table 6  Plantation and Secondary Forest removal factors used by different flux datasets and disaggregated by Brazilian biomes

For all datasets, values include above and below ground carbon. Secondary forests are further disaggregated by forest-age classes. This shows the average removal 
value for each biome, which in the National Greenhouse Gas Inventory (NGHGI) [38] varies according to the type of land use transition taking place, and in the Global 
Earth Observation (EO) [17] varies depending on the type of forest plantation. The calculated modal removal factor in each biome for the Global EO dataset (see 
“Methodology”) is shown. Values in brackets indicate removal factors also used but where the associated ecozone did not account for a large area within the biome

Biome NGHGI (Mg C ha−1 yr−1) Global EO (Mg C ha−1 yr−1) Percentage 
difference (Global 
EO/NGHGI)

Plantations

 Amazonia 12.5 (8.3 to 12.66) 11.2 (4.72 to 20.3) − 10.4%

 Atlantic forest 11.6 (10.5 to 12.6) 12.7 (4.72 to 20.3) + 9.5%

 Cerrado 12.6 (11.1 to: 12.6) 16.6 (4.72 to 20.3) + 31.7%

 Pantanal 12.7 (12.7 to 12.7) 20.2 (4.72 to 20.3) + 59.1%

 Pampa 11.0 (11.0 to 11.0) 12.9 (4.72 to 20.3) + 17.3%

 Caatinga 12.6 (12.1 to 12.7) 17.0 (4.72 to 20.3) + 34.9%

Young secondary forests (< 20 years)

 Amazonia 3.1 (0.6 to 5.2) 6.4 (3.9 to 8.0) + 106%

 Atlantic forest 1.7 (1.7 to 1.7) 4.5 (2.0 to 7.6) + 165%

 Cerrado 2.7 (0.6 to 4.7) 4.3 (2.5 to 7.3) + 59%

 Pantanal 2.8 (0.6 to 4.7) 3.6 (2.3 to 5.5) + 29%

 Pampa 3.2 (0.6 to 4.7) 2.8 (1.6 to 5.1) − 13%

 Caatinga 0.7 (0.6 to 1.0) 4.5 (2.5 to 7.2) + 543%

Old secondary forests (> 20 years)

 Amazonia – 1.36 (1.60) –

 Atlantic forest – 1.36 (1.60) –

 Cerrado – 1.60 (1.36) –

 Pantanal – 1.60 –

 Pampa – 0.59 –

 Caatinga – 1.60 –
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influence the emission factors and help to explain some 
of the observed differences in gross emissions.

The Brazilian NGHGI, SEEG and Global EO consider 
all five carbon pools: aboveground carbon, belowground 
carbon, dead wood, litter, and soil organic carbon, but 
apply different assumptions. The Global EO applies IPCC 
default ratios to estimate belowground carbon from 
aboveground carbon, climate-based ratios to estimate 
deadwood and litter carbon from aboveground carbon, 
and a global map of soil organic carbon in mineral soils. 
Where available, the NGHGI uses biome specific con-
version ratios for the belowground carbon and specific 
values for deadwood and litter and otherwise uses IPCC 
default values [38].

For estimating aboveground carbon (AGC) densi-
ties, the Global EO uses a pixel-based, remote sensing 
approach [51] and hence the spatial variability of AGC 
estimates is greater compared to the NGHGI (Fig.  8). 
The NGHGI prioritises using structural field-derived 
data from various in-country inventories across the six 
biomes, literature derived estimates, and for the Ama-
zon used LiDAR as well [47]. In both Amazonia and the 
Atlantic Forest, the mean old-growth forest AGC densi-
ties for the Global EO are similar to the NGHGI (Fig. 8), 
which may partly be because both flux datasets rely on 
field-based calibrations applying similar allometric 

equations. The estimates diverge more in the other 
biomes; however, the interquartile ranges (IQR) generally 
overlap.

There are differences in AGC densities between the 
Global EO classification of old-growth forests and old 
secondary forests. In Amazonia and Cerrado, the IQR of 
the old-growth and old secondary forests do not overlap, 
suggesting differences in the forest aboveground car-
bon dynamics between these two classifications. As the 
NGHGI does not distinguish between old-growth forests 
and old secondary forests [47], it is not clear which forest 
types the AGC estimates encompass (Fig. 8).

The method to determine deforestation and degrada-
tion varies across the flux datasets and influences the 
gross emissions. The Global EO uses a remotely sensed 
dataset to identify forest cover loss and includes losses 
associated with stand-replacing disturbances such as fire 
and logging. Smaller scale degradation events (< 30  m) 
may go undetected and, therefore, unquantified by the 
medium resolution satellite observations [17]. The rep-
resentation of degradation in the Global EO dataset is, 
therefore, incomplete. The NGHGI only considers deg-
radation via selective logging, and only in Amazonia, 
thus potentially explaining why the Global EO estimate 
for gross emissions is lower than the NGHGI. The SEEG 
does provide an estimate of emissions by fire unrelated to 

Fig. 7  Percentage of pixels classified as different forest sub-types in Brazilian datasets compared to the Global Earth Observation (EO) dataset. 
The two national datasets are the National Greenhouse Gas Inventory (NGHGI) and the SEEG. Each bar represents a forest cover type as identified 
by the Global EO dataset in 2020 [17]. The colours within each bar represent the forest type as identified by the NGHGI in 2016 (left panel) [38] 
and the SEEG in 2020 (right panel) [43]. The forest cover types of the Global EO have been adjusted to match the IPCC reporting categories, 
where FL → FL refers to ‘Forest Land remaining Forest Land’, and OL → FL refers to ‘Other land converted to Forest Land’
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deforestation in all biomes, however these are currently 
an additional dataset, and are not included in this analy-
sis [42].

Comparing flux estimates of different datasets 
in South‑East Asia
The net flux and associated gross emissions and remov-
als for Indonesia are remarkably similar in the Global EO 
(0.55 GtCO2e yr−1) and the NGHGI (0.57 GtCO2e yr−1) 
dataset [17]. Like the NGHGI, the Global EO study also 
includes emissions from peat fires and peat decomposi-
tion, key emission sources in Indonesia, although the 
way those are calculated differ between the two datasets. 
The relative contribution of different sources (e.g. defor-
estation, peat drainage and peat fires) to the gross emis-
sions estimates is different for the two datasets. Both the 
Global EO and the Indonesian NGHGI applied IPCC Tier 
1-style methodology, partially explaining  the observed 
similarity in the gross removals component. Unfortu-
nately, we could not attribute the similarities between the 
datasets in great detail given the lack of transparency and 
detail in the methodology and reporting of the NGHGI. 
For example, additional information is needed on the 
removal factors applied to the natural forests (old-growth 
or secondary forests). We compared the area of land type 

and found some differences between the two datasets; the 
area of natural forest cover in 2020 (old-growth and sec-
ondary forests) in the Global EO dataset is a third larger 
than the natural forest area in 2020 reported by Indone-
sia [52] (Table 7), suggesting there are differences in the 
definition of forest and deforestation. However, the ratio 
of swamp (peatland) forested areas to dry forested areas 
is similar between the NGHGI (0.15) and the Global EO 
(0.13) datasets (Table  7). The emission factors for pri-
mary forest carbon are 11 to 27% higher in the Global EO 
dataset than in the Indonesian NGHGI [53], potentially 
explaining some of the greater deforestation emissions in 
the Global EO dataset (Table 8).

For Malaysia, we found that the estimated net fluxes 
from the NGHGI (− 0.2  GtCO2e  yr−1) and Global EO 
(0.2  GtCO2e  yr−1) were not only different in the mag-
nitude (size) but also the sign (source or sink), despite a 
similar area of ‘forest land remaining forest land’ identi-
fied by both datasets (Table  7). One reason for the dif-
ference between the gross removal estimates in Malaysia 
may be linked to the high removal factor applied to 
all forest lands remaining forest lands by the NGHGI. 
For example, a removal factor of 4.37  MgC  ha−1  yr−1 is 
applied to inland forests, and no distinction between 
secondary and old-growth forests is made (Table 8) [50]. 

Fig. 8  Aboveground Carbon (AGC) estimates according to forest types used within different datasets in Brazil’s biomes (a to f). The datasets are 
the Global Earth Observation (EO) dataset [17] and the National Greenhouse Gas inventory (NGHGI) [38]. Box plots show the range of the AGC 
values for regions identified as old growth forests and old secondary forests by the Global EO for the year 2000. Values for the NGHGI relate to AGC 
prescribed to forest pixels or former-forested pixels. Regions of old secondary forests in the Global EO relate to only regions that were classed 
as managed old-growth forest by the NGHGI for a more consistent comparison. Grey diamonds denote the mean AGC value
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Table 7  Area of forested and non-forest lands in Indonesia and Malaysia estimated by different flux datasets

The datasets are the Global Earth Observation (EO) dataset and the National Greenhouse Gas Inventories (NGHGI). The data for the Global EO are for the year 2020 
[17], for the Indonesian NGHGI for 2020 [49], and for the Malaysian NGHGI for 2019 [50]. The years for the NGHGI are the most up to data values as submitted to the 
UNFCCC. Units are in 1000 ha. The Indonesian NGHGI data includes data on the so-called “Area Penggunaan Lain”—APL areas which are largely considered non-
forested but include some forested lands

Bold text denotes the subtotals/totals for each land type in the respective datasets and countries
* For the purpose of this study all croplands are assumed to be tree plantations
** Mangroves have been excluded from all datasets

Land type Global EO (1000 ha) NGHGI (1000 ha)

Indonesia

 Forested lands Primary dry forest: 72,109.1
Primary swamp forest: 9017.7
Old secondary dry forest (> 20 yrs): 33,168.4
Old secondary swamp forest (> 20 yrs): 5220.0
“Forest land remaining forest land” (primary + old 
secondary) subtotal: 119,515.1
Young secondary dry forest: 1772.8
Young secondary swamp forest: 197.5
Natural forest subtotal: 121,485.5

Primary dry forest: 41,029
Primary swamp forest: 4852
Secondary dry forest: 36,469
Secondary swamp forest: 6924
Natural forest subtotal: 89,274

Plantations Forest plantation: 358.7
Tree plantation: 26,127.6
Subtotal: 26,486.3

Forest plantation: 5551
Tree plantation: 20,564
Subtotal: 26,115

 Non-forested land Other land: 40,890.0 Other land: 76,809

 Total land area** 188,861.8 192,198
Malaysia

 Forested lands Old-growth forest: 12,4483.4
Old secondary forest (> 20 yr): 4595.9
Young secondary forest: 361.9
“Forest land remaining forest land” (old-growth + old 
secondary) subtotal: 17,079.3
Natural forest subtotal: 17,441.2

Forest land remaining forest land:
17,735.3

 Plantations Forest plantation: 0.0
Tree plantation: 10,613.8

*Cropland remaining cropland: 7037.9
*Forest land converted to cropland: 0.85
Cropland total: 7038.8

 Non-forested land Other land: 4922.5 Settlement remaining settlement: 2,327.1
Forest land converted to settlement:
137.1
Cropland converted to settlement: 21.9
Settlement total: 2486.0
Grassland remaining grassland: 313.0

 Total land area** 32,977.5 27,573.2

Table 8  Emission and removal factors in Indonesia and Malaysia as estimated by different flux datasets

The data for the Global EO are for the year 2020 [17], for the Indonesian NGHGI for 2020 [49], and for the Malaysian NGHGI for 2019 [50]
* These values were presented in biomass and converted to carbon using the conversion factor of 0.47

Emission factor type Global EO (Mg C ha−1 yr−1) NGHGI (Mg C ha−1 yr−1)

Indonesia

 Primary forest emission factor Country average: 197.7 Dryland:176.6*
Swamp forest: 142.7*

Malaysia

 Primary forest emission factor Country average: 159.3 Inland State land forest: 140
PRF inland: 194

 Removal factors Old growth: 0.41
Old secondary forest (> 20 yrs): 1.60
Young secondary forest (< 20 yrs): 4.2 (min:1.3’; max: 10.6)
Plantation forest: 3.0 to 14.1
Rubber: 3.4
Oil Palm: 3.02

Inland forest: 4.37
Peat swamp: 4.32
State land: 2.02
Plantation forest: 2.44
Rubber: 1.95
Oil Palm: 1.84
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The intact forest removal factor is about eleven and three 
times higher than the IPCC default values for old-growth 
and old secondary Asian tropical rainforests, respectively 
(Table 8) [54] and helps to explain the fourfold difference 
in the gross removals between the two datasets (Fig. 9). 
The intact forest value used by the NGHGI is more repre-
sentative of young secondary forest regrowth rates in this 
region (Table  8) [35, 54]. The estimated gross removals 
flux of the NGHGI is, therefore, implausible [10].

The large difference between the gross emissions in 
Malaysia may be linked to the fact that most reported 
emissions and area change (> 99%) in the Malaysian 
NGHGI are associated with “forest land converted to set-
tlement” (Table 7, Additional file 1: Tables S4 and S8). Con-
versely, the Global EO finds area change and associated 

emissions are dominated by “forest land converted to 
cropland”, with commodity driven agriculture making 
up 90% of gross emissions between 2001–2020 [55]. In 
2019, the Global EO dataset estimates that approximately 
373  kha of forest loss was commodity driven deforesta-
tion, a stark contrast to the 0.85 kha “forest land converted 
to cropland” as estimate d by the NGHGI for 2019. It is 
therefore surprising that the Malaysian NGHGI suggests 
practically no emissions from other land transitions, and 
reports only small net emissions from forest land con-
verted to cropland (0.1MtCO2) in 2019 [50]. Finally, there 
also appears to be a difference between the total land area 
of Malaysia as estimated by the NGHGI (27,573 kha) and 
the Global EO (32,978 kha) (Table 7). This discrepancy of 
18% may help to explain some of the observed difference 

Fig. 9  Average annual forest flux estimates in Indonesia and Malaysia according to different flux datasets. Bars denote the average annual gross 
emissions/removals and black points and associated text denote the net forest carbon fluxes over the period 2001 to 2020. The datasets are 
the Global Earth Observation (EO) dataset and the National Greenhouse Gas inventory (NGHGI). The raw data for the Global EO are available 
for 2001–2020 [17], for the Indonesian NGHGI for 2001–2019 [49], and for the Malaysian NGHGI for 2002–2016 [50]. For both the NGHGIs 
adjustments were made to the time period to make them comparable with the Global EO dataset (see “Methodology”). Gross emissions were 
separated according to the NGHGI categories, namely deforestation, emissions in forest land remaining forest land (FL → FL) (relating to biomass 
burning), peat decomposition, and peat fire removals. Gross removals refer to all-natural forest removals considered in the respective datasets. 
Gross removals in tree crop plantations in the Global EO were excluded as these are considered croplands by both NGHGIs. The net flux is shown 
by the black dot and associated number. Flux is given in CO2 equivalent (CO2e) as the Indonesian NGHGI did not subcategorise by gas, this 
distinction is only relevant for gross emissions and all gross removals are CO2-only
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in the total cropland area (3575  kha) reported and thus 
associated emissions resulting from forest land converted 
to cropland.

One potential reason for the difference in total area 
may be linked to the fact that the Malaysian NGHGI con-
siders new forest area in State land to be in transition and 
therefore ‘not accounted for’ [50] (page 50). Similarly, for 
their Forest Reference Level (FRL) a small area of moun-
tain and limited-access forests with no human induced 
activities are classified as unmanaged forest (0.925 Mha 
in 2015) [56]. Given that the Malaysian FRL is consist-
ent with BUR4, such an assumption may also have been 
applied within the BUR4. In our study, we assumed all 
lands within the country boundary to be managed, and 
extracted Global EO data accordingly. The differences in 
land cover areas may explain some, but certainly not all 
of the observed differences in emissions and removals. It 
was not possible to do a more detailed geospatial, pixel-
to-pixel, comparison of how each dataset classifies the 
data spatially, to explore the above hypotheses further.

Discussion
We frame the following discussion around the five UNF-
CCC reporting principles included in the IPCC Guide-
lines, which are crucial pillars moving forward in Paris 
Agreement reporting [57]. The principles are: Compa-
rability, Transparency, Consistency, Accuracy and Com-
pleteness. We discuss these principles in a broader sense, 
to how they were originally defined, to evaluate how they 
can help to understand and reconcile the differences 
between EO and national GHG inventories.

Comparability: aligning definitions of “managed” forest
Our analysis highlights the influence of the managed land 
definition on estimates of gross emissions and removals 
from forest related fluxes (Fig. 2). Brazil’s NGHGI consid-
ered a large area of conservation and indigenous lands to 
be under anthropogenic influence and, therefore, “man-
aged” (Fig. 3b and c). These areas are typically not highly 
degraded on scales detectable by moderate resolution 
satellite data such as Landsat, and so were classified as 
old-growth (primary) forests by the dataset used by the 
Global EO method used in this analysis [17, 45]. Using a 
global mask of non-primary forest to represent managed 
land was, therefore, not the best approach to accurately 
align the Global EO data with the NGHGI in Brazil [7]. 
A previous study reconciling country-scale NGHGIs and 
Bookkeeping models found similar results when using 
a global intact-forest mask in Brazil [13]. For Brazil, it 
is possible to directly apply the same mask of Managed 
Land as considered by the NGHGI to the Global EO, as 
the spatially explicit dataset of LULC in the NGHGI is 
made public.

In our study, a key source for the differences between 
the estimates of the flux datasets was the extent to which 
different forest categories were included in relation to the 
IPCC categories (Table 2). Given the differences in scope, 
purpose, and capacity of the respective flux datasets, 
each included the various types of forest transitions in 
unique ways. High granularity of the Global EO data, in 
terms of its components and spatial data, gave it flexibil-
ity such that adjustments could be made to reflect NGH-
GIs approaches and definitions, thus making it a useful 
tool for MRV purposes. Interpretation and definitions of 
forest type vary between approaches and datasets [58]. 
The category “old secondary forest” in the Global EO 
flux dataset was most akin to “secondary forest remain-
ing secondary forest” in the Brazilian NGHGI and was 
removed in adjustments (Fig.  6), as this category is not 
considered a flux source by Brazil’s NGHGI (Table  2). 
A future improvement to the Brazilian NGHGI, may 
be to include GHG fluxes in all sub-categories of man-
aged forests, and not only for old-growth managed for-
est and land converted to forest. For example, including 
GHG fluxes from secondary forests remaining second-
ary forests would provide a more complete representa-
tion of forest-related fluxes, with the additional benefit 
of also quantifying the effectiveness of GHG mitigation 
measures.

While the vast majority of countries report some GHG 
fluxes from land, only Annex I countries plus a few Non-
Annex I countries explicitly report the areas of managed 
land associated with these GHG fluxes and the area of 
unmanaged land for which no GHG flux is reported [10]. 
For most Non-Annex I countries, the area of managed land 
associated with the reported GHG fluxes, and any possible 
area of unmanaged land, remain unclear or implicit in the 
NGHGI [10]. Under the ambition to improve inventories, 
Malaysia, Indonesia, and other countries in a similar situ-
ation, may consider explicitly defining unmanaged lands 
separately from managed lands. With the Paris Agreement 
and Enhanced Transparency Framework, countries will 
have to fill in new, common reporting table of GHG fluxes 
that will naturally bring increased clarity on how countries 
separate managed vs unmanaged lands. Additionally, there 
is scope for countries that have not provided any informa-
tion so far to consider the advantages and disadvantages 
of explicitly defining all their land as managed [59, 60]. 
Reporting all emissions and removals would provide a 
complete picture of the fluxes occurring on the land [59] 
and be more directly comparable with other NGHGIs, and 
with other independent flux datasets, such as the Global 
EO dataset used in this study. Alternatively, for lands 
explicitly considered unmanaged, providing  flux data  for 
these regions could be used for information purposes only, 
and would not necessarily account towards the countries’ 
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climate targets. In any case, separately reporting emissions 
and removals in different forest types (e.g. primary forest, 
secondary forest etc.) would increase comparability as well 
as transparency.

Transparency and consistency: methods, definitions, 
and data sources
Prior to the Paris Agreement, non-Annex 1 countries 
had met their responsibilities on the level of reporting 
required within the Kyoto Protocol. Common, but dif-
ferentiated responsibilities recognised that non-Annex 
1 countries (a) had limited capacity and (b) had less his-
torical responsibility in terms of emissions contribution. 
Under the Enhanced Transparency Framework, there is 
now greater requirement for transparency and all coun-
tries will be required to provide a Biennial Transparency 
Report (BTR) from 2024 [47] to improve consistency and 
transparency among all NGHGIs [60]. The BTP will also 
help to ensure consistency between submissions, helping 
the task of the inventory reviewer. Furthermore, there is 
an increasing call for the research community to con-
tribute more to emerging MRV needs under the Paris 
Agreement [61, 62]. For this engagement to be effective, 
transparent reporting and freely available methods and 
datasets are required by the research and the national 
inventory communities [58].

Transparent methods used in each of Brazil’s datasets 
made it possible to distinguish and quantify methodo-
logical and definitional differences such as forest catego-
ries. This transparent information enabled adjustments 
to be made to improve comparability and thus credibility 
of the estimates. Unfortunately, such a geospatial analy-
sis was not possible in other countries, such as Indone-
sia and Malaysia, where digitised versions of the LULC 
maps were unavailable for open-access analysis. While it 
may not always be possible to fully reconcile differences 
between datasets as each has their own motivations and 
assumptions, the differences should be traceable so they 
can be understood. For greater transparency, countries 
could consider clearly documenting the emissions and 
removal factors used in their submissions to the UNF-
CCC, as was demonstrated in the Malaysian BUR4.

All the NGHGIs considered in our study clearly stated 
that tree crops such as palm oil and rubber are classified 
as perennial agricultural crops. Associated emissions and 
removals are, therefore, not necessarily forest-related 
(Tables 1, 2). The Global EO included tree crops broadly 
within their definition of plantations (Tables 1, 2). In this 
case, high transparency in the definitions used by each 
NGHGI enabled appropriate adjustments to be made to 
the EO dataset for a suitable comparison, demonstrating 
the value of disaggregated and flexible geospatial data.

Variations in definitions are not limited to our analysis 
and vary between global models and other internation-
ally applied flux datasets such as the FAO [10], empha-
sising the need for transparency in definitions and 
delineating which IPCC land use categories are included. 
Future updates to the Global EO flux dataset [11] could 
include spatial disaggregation of the fluxes following 
the land use category definitions and the different forest 
types used in countries’ GHG inventories. Newer ver-
sions of the Global EO dataset now provide annual emis-
sions estimates, this higher temporal granularity could 
be expanded to the gross removal estimates. This would 
improve the consistency and enable a more representa-
tive comparison with NGHGIs.

Accuracy and completeness: differences in forest types 
and removal factors—expanding definitions
For completeness, there is a need to consider all forest 
types, which might be GHG sources or sinks. EO data 
can help capture spatial and temporal heterogeneity of 
forest types and associated fluxes, to improve accuracy.

Our analysis has shown spatial differences in the for-
est cover between the Brazilian NGHGI and Global 
EO approach, especially outside the Amazonia biome, 
with divergences in the savannah and dry forest biomes 
(Fig.  5). These discrepancies explain some of the differ-
ences between the fluxes (Fig. 2) and may be an impor-
tant consideration for carrying out similar analysis 
elsewhere. In increasingly forest fragmented regions such 
as in the Cerrado, it is important to accurately distinguish 
forested areas from other naturally existing vegetation, 
such as other woody vegetation, shrublands and natu-
ral grasslands, to track transitions for a complete repre-
sentation [16]. Such distinctions can be aided by visual 
interpretation and knowledge of the areas by experts 
consulted during preparation of the NGHGIs, thus high-
lighting the potential for NGHGIs to refine methods used 
by global EO datasets.

Across the Brazilian biomes, fire and logging distur-
bances can cause forest degradation that often occurs at 
smaller-scales, and thus goes undetected by moderate 
resolution (> 30  m) remote sensing products [15]. Due 
to its complexity, the impact of forest degradation on 
emissions, and subsequent recovery, is currently poorly 
constrained in the Global EO dataset, NGHGIs, and 
other global models [2, 17, 38, 43]. As a result, motiva-
tion in NDC pledges to tackle forest degradation has 
trailed behind limiting deforestation [63]. Individual 
studies focusing on forest degradation have quantified 
and shown that degradation is a sizeable contribution 
to forest carbon emissions [64, 65], but fewer studies 
have focused on the recovery of such degraded forests 
[66–68]. There is a need to expand the current definitions 
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of forest types to accurately represent degraded forests, 
to avoid underestimating key sources of carbon emis-
sions and miss potential opportunities to protect and 
increase the carbon sink in recovering degraded forests. 
Independent EO data may be a useful tool to provide 
spatial, highly granular information that is not currently 
considered by NGHGIs and fill information gaps, provid-
ing additional knowledge for previously unmonitored or 
unaccounted (mitigation) processes.

Our analysis highlighted the differences in the removal 
factors used by different datasets as an important dis-
crepancy, demonstrating the ongoing uncertainty with 
regards to applying removal factors for different forest 
types. Per unit area, the difference was particularly evi-
dent in young secondary forests in Brazil (“other land 
converted to secondary forests”) (Table  6). However, 
the total removals associated with these young second-
ary forests are modest (Table 4), so the overall impact on 
the total gross removals is small. The difference between 
the old-growth forest removal factors was less, around 
~ 25%, but given the large area extent of old-growth for-
est, the difference in the total removals was considerable 
(Table 5).

As many countries and organisations aim to reduce 
their net carbon emissions through forest conservation 
and restoration, accurate and representative removal 
factors for all forest types [42, 45, 56] are essential for 
credibility [54, 61, 62]. Inaccurate removal factors risk 
overestimating sinks and could lead to reduced ambi-
tion in reducing fossil fuel emissions. In the Malaysian 
NGHGI, we found the Tier-2 style removal factor used 
for inland “old-growth” forests to be more representative 
of young secondary forests, suggesting there may be inac-
curacies that warrant further analysis. Remote sensing 
studies that analyse changes in AGC in space [37] and/
or time [65] may provide useful information to improve 
the accuracy of removal factors thus providing Tier-2 or 
Tier-3 information which is crucial for countries in which 
LULUCF emissions are high, such as the ones analysed 
here. There is also scope to expand the approach applied 
here to encompass other EO datasets [16], and help to 
contextualise the approach used by the EO dataset in 
this study, which relied in part on using IPCC Tier-1 style 
removal factors [17]. With the increased expectations for 
countries’ NGHGI reporting, the IPCC inventory guide-
lines and their current process should not go unchal-
lenged, with potential to also improve in terms of their 
accuracy, completeness and timeliness [69].

In this study, we highlighted the differences between 
the flux datasets regarding the forest classification 
assigned to a given pixel in space and time, which has 
implications for the emission/removal factor applied 
[26]. The impact of differences in forest type was most 

noticeable in the classification of “old secondary forest” 
in the Global EO dataset, of which many regions were 
classified as managed old-growth forests by the Brazil-
ian NGHGI and SEEG (Fig.  7). Future work identifying 
forests according to the type [15, 34] and intensity of dis-
turbance [70] may be a useful starting point for more dis-
aggregated classification. Expanding the representation 
of forest demographics beyond simply < 20 and > 20 years 
would also enable more accurate removal factors to be 
applied. Where feasible, there may be scope to align the 
definitions of forest type used by different flux datasets. 
This would enable a more credible comparison and accu-
rate assessment [58, 71]. Nevertheless, there are likely to 
be difficulties in negotiating definitions among different 
approaches and countries’ NGHGIs.

Conclusions
Independent data, such as that from the Global EO model 
included here, have the potential to provide key sources 
of information for the MRV of NGHGIs [58]. Conversely, 
information from NGHGIs may be useful to refine the 
methods and data used in the Global EO approach, for 
example by using region-specific removal factors.

Using Brazil as a primary case study, we could recon-
cile the difference between GHG fluxes from a Global 
EO dataset and the NGHGI. With no adjustment to 
the Global EO dataset, considering all forest fluxes 
in the country boundary, the difference between the 
Global EO flux (− 0.2  GtCO2  yr−1) and the NGHGI flux 
(0.8 GtCO2 yr−1) from 2001 to 2020 was 1.0 GtCO2 yr−1 
and estimates were opposite in sign. Adjusting the Global 
EO flux by applying the Brazilian NGHGI definition of 
managed forest area and only considering the assump-
tions in their inventory (in terms of land transition and 
flux categories) resulted in the adjusted Global EO net 
flux to be 0.6 GtCO2 yr−1, now just 0.2 GtCO2 yr−1 lower 
compared to the NGHGI. The various adjustments also 
highlight the impact of considering all land as managed 
versus different applications of the managed land proxy. 
The analysis was made possible due to the availability of 
the geospatial data and transparency in methodologies 
from all flux datasets.

In the other two case study countries, Indonesia and 
Malaysia, the analysis was limited to the tabular data pro-
vided by the respective NGHGIs as no spatially explicit 
datasets on forest cover types were publicly available. 
Limited transparency in the emission and removal fac-
tors used also restricted detailed analysis. However, a 
comparative analysis indicated where differences and 
uncertainties exist and where areas for improvement in 
both the NGHGIs and Global EO datasets can lead to 
increasing harmonisation.
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The adjustments outlined in this study can also be used 
to aid comparisons with and benchmarking of other 
approaches, such as global models or in other regions. 
Below we outline some key lessons learned in this study:

•	 Effective comparisons require more clarity by coun-
tries in their use of the Managed Land Proxy and 
IPCC forest categories. Making the appropriate 
adjustments to account for differences between data-
sets becomes increasingly important when using 
independent flux datasets for MRV at (sub)-country 
scales. For completeness and information purposes, 
NGHGIs could voluntarily consider providing fluxes 
associated to unmanaged land or consider all land to 
be managed.

•	 Full transparency is crucial for understanding dif-
ferences and making effective comparisons between 
datasets. This includes ensuring transparency in the 
methodology and open access to the data used by all 
approaches.

•	 Further disaggregation in the forest types and associ-
ated fluxes in all datasets will facilitate greater com-
parability and completeness. Independent datasets 
could disaggregate the fluxes by the land use cat-
egories and forest types  used in NGHGIs, to allow 
greater comparability. All flux datasets could explic-
itly consider disturbance type and intensity, and asso-
ciated recovery.

As more information and datasets become available, 
including EO, countries’ requirements and capacity to 
report is expected to increase in transparency, compa-
rability, consistency, completeness, and accuracy. Addi-
tionally, region specific information compiled for use in 
NGHGIs can also be used to improve local applicability 
of Global EO assessments. Given the approval of Article 
6.4 of the Paris Agreement, and the numerous pledges 
and commitments that have been made by business 
organisations, cities, nations, and international agree-
ments to protect and restore forests, the need to meas-
ure, report and especially verify estimates becomes 
increasingly important. If this is not achieved in accurate 
and credible ways, we risk mis-representing the carbon 
fluxes of the world’s forests, one of our most important 
allies on land, to tackle the climate emergency.
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