28 research outputs found

    Fabrication of sustainable hydrophobic and oleophilic pseudo-ordered macroporous Fe-Cu films with tunable composition and pore size via electrodeposition through colloidal templates

    Get PDF
    In this work, sustainable hydrophobic and oleophilic macroporous Fe-Cu films are fabricated using a straightforward, inexpensive and environmentally friendly two-step procedure which combines electrodeposition with the colloidal lithography technique. Elemental, morphological and structural characterization of the resulting pseudo-ordered meshes is carried out and wettability is assessed using contact angle measurements with respect to two distinct film compositions (3 at.% Fe vs 75-85 at.% Fe) and three different pore diameters (namely, 200 nm, 350 nm and 500 nm). Water contact angles are measured to be in the range of approximately 109.0-155.1° (without any post-surface functionalization) and a low contact angle hysteresis is observed in the superhydrophobic samples. The increase in the hydrophobic character of the films correlates well with an increase in surface roughness, whereas differences in composition play a minor role. For the superhydrophobic Fe-rich macroporous film, water-oil separation capability and recyclability are also demonstrated while the pore size is favorable for effective water-oil mixture and emulsion separation. The results shown here demonstrate that sustainable and affordable materials processed in a simple and cheap manner can be an asset for the removal of water-immiscible organic compounds from aqueous environments

    Compressive stress-mediated p38 activation required for ER alpha plus phenotype in breast cancer

    Get PDF
    Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ER alpha + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ER alpha-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ER alpha + breast cancer models. The ER alpha + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ER alpha is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ER alpha signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ER alpha phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK. Reliable luminal estrogen receptor (ER alpha+) breast cancer models are limited. Here, the authors use patient derived breast epithelial and breast cancer explant cultures grown in several extracellular matrix scaffolds and show that ER alpha expression is regulated by matrix stiffness via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation.Peer reviewe

    Protective coatings for intraocular wirelessly controlled microrobots for implantation : corrosion, cell culture, and in vivo animal tests

    Get PDF
    Grup: Gnm3 FundingDiseases in the ocular posterior segment are a leading cause of blindness. The surgical skills required to treat them are at the limits of human manipulation ability, and involve the risk of permanent retinal damage. Instrument tethering and design limit accessibility within the eye. Wireless microrobots suturelessly injected into the posterior segment, steered using magnetic manipulation, are proposed for procedures involving implantation. Biocompatibility is a prerequisite for these procedures. This paper investigates the use of cobalt-nickel microrobots coated with polypyrrole, and gold, which has been used as an ocular implant material. Polypyrrole has well-established biocompatibility properties, but no reports concerning its ocular implantation is available. Coated and uncoated microrobots were investigated for their corrosion properties, and solutions that had contained coated and uncoated microrobots for one week were tested for cytotoxicity by monitoring NIH3T3 cell viability. None of the microrobots showed significant corrosion currents and corrosion potentials were as expected in relation to the intrinsic nobility of the materials. NIH3T3 cell viability was not affected by the release medium, in which coated/uncoated microrobots were stored. In vivo tests inside rabbit eyes were performed using coated microrobots. There were no significant inflammatory responses during the first week after injection. An inflammatory response detected after two weeks was likely due to a lack of longer-duration biocompatibility. The results provide valuable information for those who work on implant technology and biocompatibility. Coated microrobots have the potential to facilitate a new generation of surgical treatments, diagnostics and drug-delivery techniques, when implantation in the ocular posterior segment will be possible

    Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors

    Get PDF
    We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets (dPeer reviewe

    Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer

    Get PDF
    Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ER alpha + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ER alpha-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ER alpha + breast cancer models. The ER alpha + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ER alpha is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ER alpha signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ER alpha phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.Reliable luminal estrogen receptor (ER alpha+) breast cancer models are limited. Here, the authors use patient derived breast epithelial and breast cancer explant cultures grown in several extracellular matrix scaffolds and show that ER alpha expression is regulated by matrix stiffness via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation.</p

    DialyysistÀ

    No full text

    Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures

    No full text
    Publisher Copyright: © 2024 The Royal Society of Chemistry.A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 ÎŒm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.Peer reviewe

    Magnetic probe-based microrheology reveals local softening and stiffening of 3D collagen matrices by fibroblasts

    No full text
    Changes in extracellular matrix stiffness impact a variety of biological processes including cancer progression. However, cells also actively remodel the matrices they interact with, dynamically altering the matrix mechanics they respond to. Further, cells not only react to matrix stiffness, but also have a distinct reaction to matrix viscoelasticity. The impact of cell-driven matrix remodeling on matrix stiffness and viscoelasticity at the microscale remains unclear, as existing methods to measure mechanics are largely at the bulk scale or probe only the surface of matrices, and focus on stiffness. Yet, establishing the impact of the matrix remodeling at the microscale is crucial to obtaining an understanding of mechanotransduction in biological matrices, and biological matrices are not just elastic, but are viscoelastic. Here, we advanced magnetic probe-based microrheology to overcome its previous limitations in measuring viscoelasticity at the cell-size-scale spatial resolution within 3D cell cultures thathave tissue-relevant stiffness levels up to a Young’s modulus of 0.5 kPa. Our magnetic microrheometers exert controlled magnetic forces on magnetic microprobes within reconstituted extracellular matrices and detect microprobe displacement responses to measure matrix viscoelasticity and determine the frequency-dependent shear modulus (stiffness), the loss tangent, and spatial heterogeneity. We applied these tools to investigate how microscale viscoelasticity of collagen matrices is altered by fibroblast cells as they contract collagen gels, a process studied extensively at the macroscale. Interestingly, we found that fibroblasts first soften the matrix locally over the first 32 hours of culture, and then progressively stiffen the matrix thereafter. Fibroblast activity also progressively increased the matrix loss tangent. We confirmed that the softening is caused by matrix-metalloproteinase-mediated collagen degradation, whereas stiffening is associated with local alignment and densification of collagen fibersaround the fibroblasts. This work paves the way for the use of measurement systems that quantify microscale viscoelasticity within 3D cell cultures for studies of cell–matrix interactions in cancer progression and other areas.Peer reviewe

    Magnetic microrheometry of tumor-relevant stiffness levels and probabilistic quantification of viscoelasticity differences inside 3D cell culture matrices.

    No full text
    The progression of breast cancer involves cancer-cell invasions of extracellular matrices. To investigate the progression, 3D cell cultures are widely used along with different types of matrices. Currently, the matrices are often characterized using parallel-plate rheometry for matrix viscoelasticity, or liquid-like viscous and stiffness-related elastic characteristics. The characterization reveals averaged information and sample-to-sample variation, yet, it neglects internal heterogeneity within matrices, experienced by cancer cells in 3D culture. Techniques using optical tweezers and magnetic microrheometry have measured heterogeneity in viscoelasticity in 3D culture. However, there is a lack of probabilistic heterogeneity quantification and cell-size-relevant, microscale-viscoelasticity measurements at breast-tumor tissue stiffness up to ≃10 kPa in Young's modulus. Here, we have advanced methods, for the purpose, which use a magnetic microrheometer that applies forces on magnetic spheres within matrices, and detects the spheres displacements. We present probabilistic heterogeneity quantification using microscale-viscoelasticity measurements in 3D culture matrices at breast-tumor-relevant stiffness levels. Bayesian multilevel modeling was employed to distinguish heterogeneity in viscoelasticity from the effects of experimental design and measurement errors. We report about the heterogeneity of breast-tumor-relevant agarose, GrowDex, GrowDex-collagen and fibrin matrices. The degree of heterogeneity differs for stiffness, and phase angle (i.e. ratio between viscous and elastic characteristics). Concerning stiffness, agarose and GrowDex show the lowest and highest heterogeneity, respectively. Concerning phase angle, fibrin and GrowDex-collagen present the lowest and the highest heterogeneity, respectively. While this heterogeneity information involves softer matrices, probed by ≃30 ÎŒm magnetic spheres, we employ larger ≃100 ÎŒm spheres to increase magnetic forces and acquire a sufficient displacement signal-to-noise ratio in stiffer matrices. Thus, we show pointwise microscale viscoelasticity measurements within agarose matrices up to Young's moduli of 10 kPa. These results establish methods that combine magnetic microrheometry and Bayesian multilevel modeling for enhanced heterogeneity analysis within 3D culture matrices
    corecore