14 research outputs found

    Reperfusion therapy for ST elevation acute myocardial infarction 2010/2011: current status in 37 ESC countries

    Get PDF
    Aims Primary percutaneous coronary intervention (PPCI) is the preferred reperfusion therapy in ST-elevation myocardial infarction (STEMI). We conducted this study to evaluate the contemporary status on the use and type of reperfusion therapy in patients admitted with STEMI in the European Society of Cardiology (ESC) member countries. Methods and results A cross-sectional descriptive study based on aggregated country-level data on the use of reperfusion therapy in patients admitted with STEMI during 2010 or 2011. Thirty-seven ESC countries were able to provide data from existing national or regional registries. In countries where no such registries exist, data were based on best expert estimates. Data were collected on the use of STEMI reperfusion treatment and mortality, the numbers of cardiologists, and the availability of PPCI facilities in each country. Our survey provides a brief data summary of the degree of variation in reperfusion therapy across Europe. The number of PPCI procedures varied between countries, ranging from 23 to 884 per million inhabitants. Primary percutaneous coronary intervention and thrombolysis were the dominant reperfusion strategy in 33 and 4 countries, respectively. The mean population served by a single PPCI centre with a 24-h service 7 days a week ranged from 31 300 inhabitants per centre to 6 533 000 inhabitants per centre. Twenty-seven of the total 37 countries participated in a former survey from 2007, and major increases in PPCI utilization were observed in 13 of these countries. Conclusion Large variations in reperfusion treatment are still present across Europe. Countries in Eastern and Southern Europe reported that a substantial number of STEMI patients are not receiving any reperfusion therapy. Implementation of the best reperfusion therapy as recommended in the guidelines should be encourage

    Intensive care professionals' perspectives on dysphagia management: a focus group study

    No full text

    Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    No full text
    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding. The amounts of active R28C mutant enzyme produced could be modulated between undetectable to 100% of the wild-type control by manipulating the level of available chaperonins and the growth temperature. For the prevalent K304E mutation, however, the amounts of active mutant enzyme could be modulated only in a range from undetectable to approximately 50% of the wild-type, and the assembled mutant enzyme displayed a decreased thermal stability. Two artificially constructed mutants (K304Q and K304E/D346K) yielded clearly higher amounts of active MCAD enzyme than the K304E mutant but were also responsive to chaperonin co-overexpression and growth at low temperature. The thermal stability profile of the K304E/D346K double mutant was shifted to even lower temperatures than that of the K304E mutant, whereas that of the K304Q mutant was closely similar to the wild-type. Taken together, the results show that the K304E mutation affects (i) polypeptide folding due to elimination of the positively charged lysine and (ii) oligomer assembly and stability due to replacement of lysine 304 with the negatively charged glutamic acid
    corecore