14 research outputs found

    The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation

    Get PDF
    Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70% of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60%) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60% (all-E), 20% 5-(Z), 9% 13-(Z), 2% 9-(Z) and 9% unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in human

    Gastrointestinal Tolerance of Short-Chain Fructo-Oligosaccharides from Sugar Beet: An Observational, Connected, Dose-Ranging Study in Healthy Volunteers

    No full text
    Dietary fibres are important in the human diet with multiple health benefits. This study aimed to determine the gastrointestinal tolerance of short-chain fructo-oligosaccharides (scFOS), well-known prebiotic fibres, at doses up to 40 g/d. An observational, connected, dose-ranging trial was conducted in 116 healthy volunteers. During the first week, the participants were instructed to consume their usual diet. During the second week, half of the subjects consumed 15 g scFOS per day, and the other half consumed 20 g scFOS per day. For the third week, the scFOS dose was doubled for all subjects. Gastrointestinal symptom severity was reported daily, as well as stool consistency and frequency. The results show that scFOS are well tolerated up to 40 g/d; all reported symptoms remained very mild from a clinical perspective. Stool consistency stayed normal, between 3 and 5 on the Bristol stool scale, confirming that no diarrhoea appeared after scFOS intake. Stool frequency also remained within the normal range. In conclusion, scFOS intake is well tolerated up to 40 g/d in healthy subjects. Thanks to their short chains and unique composition, scFOS prebiotic fibres are much better tolerated than other types of inulin-type fructans with longer chains. The digestive tolerance of fibres should be considered when added to foods and beverages

    Cholesterol-lowering effect of non-viscous soluble dietary fiber NUTRIOSE<sup>®</sup>6 in moderately hypercholesterolemic hamsters

    No full text
    219-228NUTRIOSE®6 is a new wheat starch-based low-digestible carbohydrate. This study investigated the effect of this soluble non-viscous fiber on cholesterol metabolism. Hamsters fed with 0.25% cholesterol-enriched diet (CHO) were given graded amounts of NUTRIOSE®6, i.e. 0% (cellulose, CHO), 3% (N3), 6% (N6) or 9% (N9) (w:w). As compared to CHO diet, 9% NUTRIOSE®6 significantly lowered plasma and LDL cholesterol by 14.5 and 23.8%, respectively. The LDL-cholesterol lowering effect was also significant with the 6% dose (-21.4%). NUTRIOSE®6 diets prevented hepatic cholesterol accumulation (-10 to -20%) and significantly decreased bile cholesterol (-47 to -68%) and phospholipids (-30 to -45%) concentrations. The 9% NUTRIOSE®6 diet significantly decreased the rate of dietary cholesterol absorption (-25%) and markedly stimulated faecal neutral sterol (+81%) and bile salts (+220%) excretion. No significant change in cholesterol 7-a-hydroxylase or LDL-receptor activities was observed whereas 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was reduced by 29%. Reduced cholesterol and bile salt absorptions and lowered cholesterol synthesis are likely mechanisms underlying the cholesterol lowering effect of NUTRIOSE®6. Results suggest the use of NUTRIOSE®6 as a new dietary cholesterol-lowering agent that should be tested in humans as treatment and evenly prevention of mild hypercholesterolemia

    Cholesterol-lowering effect of non-viscous soluble dietary fiber NUTRIOSE (R) 6 in moderately hypercholesterolemic hamsters

    No full text
    International audienceNUTRIOSE (R) 6 is a new wheat starch-based low-digestible carbohydrate. This study investigated the effect of this soluble non-viscous fiber on cholesterol metabolism. Hamsters fed with 0.25% cholesterol-enriched diet (CHO) were given graded amounts of NUTRIOSE (R) 6, i.e. 0% (cellulose, CHO), 3% (N3), 6% (N6) or 9% (N9) (w:w). As compared to CHO diet, 9% NUTRIOSE (R) 6 significantly lowered plasma and LDL cholesterol by 14.5 and 23.8%, respectively. The LDL-cholesterol lowering effect was also significant with the 6% dose (-21.4%). NUTRIOSE (R) 6 diets prevented hepatic cholesterol accumulation (-10 to -20%) and significantly decreased bile cholesterol (-47 to -68%) and phospholipids (-30 to -45%) concentrations. The 9% NUTRIOSE (R) 6 diet significantly decreased the rate of dietary cholesterol absorption (-25%) and markedly stimulated faecal neutral sterol (+81%) and bile salts (+220%) excretion. No significant change in cholesterol 7-alpha-hydroxylase or LDL-receptor activities was observed whereas 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was reduced by 29%. Reduced cholesterol and bile salt absorptions and lowered cholesterol synthesis are likely mechanisms underlying the cholesterol lowering effect of NUTRIOSE (R) 6. Results suggest the use of NUTRIOSE (R) 6 as a new dietary cholesterol-lowering agent that should be tested in humans as treatment and evenly prevention of mild hypercholesterolemia
    corecore