9 research outputs found

    The Earliest Phases of Star Formation (EPoS): A Herschel Key Program - The precursors to high-mass stars and clusters

    Get PDF
    (Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. The core population has a median temperature of 20K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 micron are warmer and bluer on average than cores without a 24 micron counterpart. We conclude that cores bright at 24 micron are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 micron-dark cores. The 24 micron emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given cloud's core population. We uncover over 300 further candidate cores which are dark until 100 micron. These are candidate starless objects, and further observations will help us determine the nature of these very cold cores.Comment: Accepted for publication in A&A, 81 pages, 68 figures. For full resolution image gallery (Appendix B), see http://www.mpia.de/~ragan/epos.htm

    Geographies of resilience

    No full text
    In disaster science, policy and practice, the transition of resilience from a descriptive concept to a normative agenda provides challenges and opportunities. This paper argues that both are needed to increase resilience. We briefly outline the concept and several recent international resilience-building efforts to elucidate critical questions and less-discussed issues. We highlight the need to move resilience thinking forward by emphasizing structural social-political processes, acknowledging and acting on differences between ecosystems and societies, and looking beyond the quantitative streamlining of resilience into one index. Instead of imposing a technical-reductionist framework, we suggest a starting basis of integrating different knowledge types and experiences to generate scientifically reliable, context-appropriate and socially robust resilience-building activities

    Nanoscale topographical control of capillary assembly of nanoparticles

    No full text
    Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore