542 research outputs found

    Consensus of self-driven agents with avoidance of collisions

    Get PDF
    In recent years, many efforts have been addressed on collision avoidance of collectively moving agents. In this paper, we propose a modified version of the Vicsek model with adaptive speed, which can guarantee the absence of collisions. However, this strategy leads to an aggregated state with slowly moving agents. We therefore further introduce a certain repulsion, which results in both faster consensus and longer safe distance among agents, and thus provides a powerful mechanism for collective motions in biological and technological multi-agent systems.Comment: 8 figures, and 7 page

    Chronic Stress Elevates Telomerase Activity in Rats

    Get PDF
    The enzyme telomerase lengthens telomeresā€”protective structures containing repetitive DNA sequences at chromosome ends. Telomere shortening is associated with diseases of ageing in mammals. Chronic stress has been related to shorter immune-cell telomeres, but telomerase activity under stress may be low, permitting telomere loss, or high, partially attenuating it. We developed an experimental model to examine the impacts of extended unpredictable stress on telomerase activity in male rats. Telomerase activity was 54 per cent higher in stressed rats than in controls, and associated with stress-related physiological and behavioural outcomes. This significant increase suggests a potential mechanism for resilience to stress-related replicative senescence

    Binding Mechanism of Metalā‹…NTP Substrates and Stringent-Response Alarmones to Bacterial DnaG-Type Primases

    Get PDF
    SummaryPrimases are DNA-dependent RNA polymerases found in all cellular organisms. In bacteria, primer synthesis is carried out by DnaG, an essential enzyme that serves as a key component of DNA replication initiation, progression, and restart. How DnaG associates with nucleotide substrates and how certain naturally prevalent nucleotide analogs impair DnaG function are unknown. We have examined one of the earliest stages in primer synthesis and its control by solving crystal structures of the S.Ā aureus DnaG catalytic core bound to metal ion cofactors and either individual nucleoside triphosphates or the nucleotidyl alarmones, pppGpp and ppGpp. These structures, together with both biochemical analyses and comparative studies of enzymes that use the same catalytic fold as DnaG, pinpoint the predominant nucleotide-binding site of DnaG and explain how the induction of the stringent response in bacteria interferes with primer synthesis

    Determination of Dosage Compensation of the Mammalian X Chromosome by RNA-seq is Dependent on Analytical Approach

    Get PDF
    Background An enduring question surrounding sex chromosome evolution is whether effective hemizygosity in the heterogametic sex leads inevitably to dosage compensation of sex-linked genes, and whether this compensation has been observed in a variety of organisms. Incongruence in the conclusions reached in some recent reports has been attributed to different high-throughput approaches to transcriptome analysis. However, recent reports each utilizing RNA-seq to gauge X-linked gene expression relative to autosomal gene expression also arrived at diametrically opposed conclusions regarding X chromosome dosage compensation in mammals. Results Here we analyze RNA-seq data from X-monosomic female human and mouse tissues, which are uncomplicated by genes that escape X-inactivation, as well as published RNA-seq data to describe relative X expression (RXE). We find that the determination of RXE is highly dependent upon a variety of computational, statistical and biological assumptions underlying RNA-seq analysis. Parameters implemented in short-read mapping programs, choice of reference genome annotation, expression data distribution, tissue source for RNA and RNA-seq library construction method have profound effects on comparing expression levels across chromosomes. Conclusions Our analysis shows that the high number of paralogous gene families on the mammalian X chromosome relative to autosomes contributes to the ambiguity in RXE calculations, RNA-seq analysis that takes into account that single- and multi-copy genes are compensated differently supports the conclusion that, in many somatic tissues, the mammalian X is up-regulated compared to the autosomes

    Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins

    Get PDF
    Knowledge of all binding sites for transcriptional activators and repressors is essential for computationally aided identification of transcriptional networks. The techniques developed for defining the binding sites of transcription factors tend to be cumbersome and not adaptable to high throughput. We refined a versatile yeast strategy to rapidly and efficiently identify genomic targets of DNA-binding proteins. Yeast expressing a transcription factor is mated to yeast containing a library of genomic fragments cloned upstream of the reporter gene URA3. DNA fragments with target-binding sites are identified by growth of yeast clones in media lacking uracil. The experimental approach was validated with the tumor suppressor protein p53 and the forkhead protein FoxI1 using genomic libraries for zebrafish and mouse generated by shotgun cloning of short genomic fragments. Computational analysis of the genomic fragments recapitulated the published consensus-binding site for each protein. Identified fragments were mapped to identify the genomic context of each binding site. Our yeast screening strategy, combined with bioinformatics approaches, will allow both detailed and high-throughput characterization of transcription factors, scalable to the analysis of all putative DNA-binding proteins

    White Shark Genome Reveals Ancient Elasmobranch Adaptations Associated with Wound Healing and the Maintenance of Genome Stability

    Get PDF
    The white shark (Carcharodon carcharias; Chondrichthyes, Elasmobranchii) is one of the most publicly recognized marine animals. Here we report the genome sequence of the white shark and comparative evolutionary genomic analyses to the chondrichthyans, whale shark (Elasmobranchii) and elephant shark (Holocephali), as well as various vertebrates. The 4.63-Gbp white shark genome contains 24,520 predicted genes, and has a repeat content of 58.5%. We provide evidence for a history of positive selection and gene-content enrichments regarding important genome stability-related genes and functional categories, particularly so for the two elasmobranchs. We hypothesize that the molecular adaptive emphasis on genome stability in white and whale sharks may reflect the combined selective pressure of large genome sizes, high repeat content, high long-interspersed element retrotransposon representation, large body size, and long lifespans, represented across these two species. Molecular adaptation for wound healing was also evident, with positive selection in key genes involved in the wound-healing process, as well as Gene Ontology enrichments in fundamental wound-healing pathways. Sharks, particularly apex predators such as the white shark, are believed to have an acute sense of smell. However, we found very few olfactory receptor genes, very few trace amine-associated receptors, and extremely low numbers of G protein-coupled receptors. We did however, identify 13 copies of vomeronasal type 2 (V2R) genes in white shark and 10 in whale shark; this, combined with the over 30 V2Rs reported previously for elephant shark, suggests this gene family may underlie the keen odorant reception of chondrichthyans

    Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-Ī² signaling pathways in cancer

    Get PDF
    Background: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-Ī² levels and EMT signaling. Given that many drugs targeting TGF-Ī² have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-Ī²/EMT axis. Results: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-Ī² and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-Ī² levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-Ī²/SMAD2&3) and non-canonical (TGF-Ī²/PI3K/AKT, TGF-Ī²/RAS/RAF/MEK/ERK, and TGF-Ī²/WNT/Ī²-catenin) TGF-Ī² signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, Ī²-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Conclusions: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-Ī² and inhibiting EMT in a diverse range of cancers
    • ā€¦
    corecore