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In recent years, many efforts have been addressed on collision avoidance of collectively moving agents. In
this paper, we propose a modified version of the Vicsek model with adaptive speed, which can guarantee the
absence of collisions. However, this strategy leads to an aggregated state with slowly moving agents. We
therefore further add a certain repulsion, which results in both faster consensus and longer safe distance among
agents, and thus provides a powerful mechanism for collective motions in biological and technological mul-
tiagent systems.

I. INTRODUCTION

One of the most marvelous and ubiquitous phenomena in
nature is collective motion, a kind of motion that can be
observed at almost every scale: from bird flocks and fish
schools at the macroscopic level to bacteria, individual cells,
and even molecular motors at the microscopic level �1–9�.
Although in most cases agents do not share global informa-
tion and often travel in the absence of leaders or external
forces, collective motion may still occur. Analogous behav-
iors are reported in engineering systems also, such as groups
of autonomous mobile robots and air vehicles �10–16�. �See
also a newly reported swarm model that may connect granu-
lar materials and agent-based models �17�.� In order to un-
cover the underlying mechanism leading to the consensus of
collective population, Vicsek et al. �18� proposed a model
with self-driven agents to mimic the biological swarm, which
displays a novel type of kinetic phase transition. From then
on, the nature of the nonequilibrium phase transition of col-
lective motion attracted greater and greater attention
�19–24�. Due to simplicity and efficiency, many modified
versions of the Vicsek model were proposed. For example,
some new methods with effective leadership were introduced
�15,25,26�, and new moving protocols with adaptive speed to
accelerate the consensus were designed �27,28�. Meanwhile
some scholars have studied the consensus of collective mo-
tions via low-cost communication �29� and predictive
mechanism �30–32�, all of which can greatly enhance the
global convergence.

Recently, much attention has been focused on how to
keep distances among agents. A common way is to introduce
attraction and/or repulsion �15–17,33–40�. However, any
kind of repulsion alone cannot sufficiently avoid collision at
all times because it is entirely possible that in a high-density

area, two agents are compelled to collide for the purpose of
avoidance of collision with other agents. In this paper, we
propose a swarm model with adaptive speed to completely
eliminate collisions. In a plane, each agent adjusts its direc-
tion as the average direction of its neighbors while it resets
its speed according to the minimal distance from its neigh-
bors. The farther an agent is away from its nearest neighbor,
the higher speed it has. This strategy can completely avoid
collisions; however, it results in an aggregated state where
the agents move very slowly in average. Therefore, we fur-
ther introduce a repulsion that can break down the aggrega-
tion of agents, and thus sharply speeds up the global conver-
gence and enlarges the average distance among agents.

II. MODEL WITH ADAPTIVE SPEED

We consider each agent as an inelastic ball with radius a,
limited in a square-shaped cell of linear size L with periodic
boundary conditions. Initially, each agent is randomly dis-
tributed in the square, with moving direction randomly dis-
tributed in �−� ,��. At each time step, the position of the ith
agent is updated as

x�i�t + 1� = x�i�t� + v� i�t� , �1�

and its direction is updated as

�i�t + 1� = ��i�t��r + ��i, �2�

where ��i denotes the thermal noise which is a random num-
ber uniformly distributed in the interval �−� ,��. �In the main
context, we only consider the noise-free case, namely, �=0.
A brief discussion about the effect of noise is presented in
Sec. IV.� ��i�t��r denotes the average direction of the agents
within the horizon radius r of the ith agent �including the ith
agent itself�, which reads

tan���i�t��r� = �vi sin �i�t��r/�vi cos �i�t��r. �3�*zhutou@ustc.edu
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In natural swarms, the speed of each agent is alterable;
that is, agent may adjust not only its moving direction, but
also its absolute velocity. In the common sense, to avoid
collisions with other agents, an agent in a high-density group
should adopt lower speed. Taking urban traffic as an ex-
ample, the speed of an automobile is very low in the near-
jammed situation, whereas it is generally of high speed when
sparse automobiles take up the road. Accordingly, we set the
speed of the ith agent to not more than vi= �di−2a� /2, where
di is the geographical distance between two centers of the ith
agent and its nearest neighbor �see the illustration shown in
Fig. 1�. No matter how the ith agent and its nearest neighbor
choose their directions in the next time step, the restriction
can guarantee the distance between them no less than 2a and
therefore avoid collision. In fact, this restriction is not only
sufficient, but actually necessary. As the direction �i�t+1� of
each agent in the next time step is determined by the average
direction within its own horizon radius, it is impossible for
an agent to know all the information of its neighbors, espe-
cially the moving directions of its neighbors in the next time
step. Therefore, in order to avoid collision, it is obliged to
take into account the worst circumstance, that is, two neigh-
bors mutually approach. In this worst case, keeping the speed
of each agent �labeled by i� no more than �di−2a� /2 is the
only way to guarantee the absence of collisions.

Accordingly, the absolute velocity of each agent is up-
dated with the following rule:

vi�t + 1� = min�vmax,
di − 2a

2
	 . �4�

Clearly, when the distance between an agent and its nearest
neighbor is longer than 2vmax+2a, its following speed can
achieve the maximum; otherwise, its speed is limited as �di
−2a� /2.

Moreover, in order to quantify the consensus of moving
directions, an order parameter �18� is introduced as

Va =


�
i=1

N

v� i

�
i=1

N

vi

, 0 � Va � 1, �5�

where vi= �v� i�. A larger value of Va indicates better consen-
sus. Since the speed in this model is no longer constant, it is
necessary to define another order parameter Vb to evaluate
the consensus of the absolute velocity as

Vb =
�v2

v
, Vb � 0, �6�

where v= �vi� is the average absolute velocity of all the
agents, and �v2 is the variance of the absolute velocity. Ap-
parently, a smaller Vb corresponds to better consensus. Espe-
cially when Vb=0, all agents share the same speed.

Numerical results reveal that after the direction consen-
sus, speed still varies. Figures 2�a� and 2�b� respectively il-
lustrate the locations and velocities of all the agents in the
initial configuration and at the 500th time step. After a cer-
tain time period from the beginning, the positions of agents
are not uniformly distributed and an aggregation phenom-
enon appears �see Fig. 2�b��. Therein the average speed in a
high-density area is much slower than that in a low-density
area. This aggregated state can be understood as follows:

FIG. 1. Illustration of the current model with adaptive speed,
where r denotes the horizon radius of an agent, di denotes the dis-
tance of the ith agent and its nearest neighbor, vmax denotes the
possibly maximal velocity, and a denotes the size of an agent. Ac-
cordingly, 2a corresponds to the least distance of two agents.

(a)

(b)

FIG. 2. Illustrations of locations and velocities �a� in the initial
configuration, and �b� at the 500th time step. The parameters are set
as L=5, N=300, r=1, vmax=0.03, and a=0.01. The length and di-
rection of an arrow represent the absolute value and direction of the
corresponding agent’s velocity.
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agents in a high-density region agglomerate together and
mutually move in a low speed; thus they can seldom disperse
apart. Meanwhile they take up the way of their subsequent
peers whose speed is higher, making the high-density area
congregate more agents, and in turn achieving even higher
density and slower speed. �Of course, on the other hand, the
density is limited by the size of agents, a.� Moreover, the
motions of agents are similar to the laminar flow in hydro-
mechanics: when Va gets close to 1, each agent is moving
along a line with the same direction and will never diverge
from its final track. Thus, different layers present various
flowing speeds.

In the current model, the nearest distance among agents in
high-density areas is very close to 2a, making the involved
agents move in a very low speed �close to 0�. In the mean-
time the nearest distances among agents in low-density areas
are usually more than 2a+2vmax; accordingly the involved
agents can achieve a high speed �close to vmax�. Conse-
quently, the absolute velocities of all agents in the whole
system can be in a high diversity. Only in a low-density layer
can the agents maintain high-speed movement in a compara-
tively long term. As a matter of fact, the swarm never get
speed consensus even with identical directions, as shown
later in Fig. 5�b�. For the purpose of making all the agents
achieve the consensus with higher speed, it is necessary to
define a certain repulsion to avoid agglomeration. In addi-
tion, denoting rij −2a as the safe distance between the ith and
the jth agents, where rij denotes the geographical distance
between the ith and the jth agents. In real applications of
unmanned air vehicles and autorobots, the longer safe dis-
tance is favorable. Therefore we hope a properly designed
moving protocol with repulsion could make the safe distance
longer.

III. SCATTERING MODEL

Based on the strategy with adaptive speed mentioned
above, in this section, we define a repulsion to enlarge the
safe distances among agents. We assume: �1� the direction of
the repulsion should be along the line of two agents, and �2�
the magnitude of the repulsion should decrease with the in-
crease in distance between two agents. Moreover, as long as
the distance between two agents is over 2vmax+2a, no matter
how they choose their directions and speeds, collision will
not occur in the following steps. Considering this, the repul-
sion in our model should be a short-distance force and work
only when the distance is shorter than r0 �r0=2vmax+2a�.
Accordingly, we set the form of repulsion force as

f�ij = �u exp�−
1

1 − rij/r0
	 r�ij

rij
, rij � r0

0, rij � r0,
� �7�

where u is a free parameter. Since the mass of an agent plays
no role in the present model, we suppose the repulsive effect
�caused by the repulsion� can directly affect the velocity vec-
tor in the next time step �see Fig. 3 for an illustration�.

After defining such a repulsion, the moving direction of
each agent is determined not only by the average direction

within its horizon radius, but also by the repulsive effect. The

synthesis of repulsive effect f�i �f�i=� j=1
N f� ji, determined by Eq.

�7�� and the average velocity v� i �whose direction and magni-
tude are respectively determined by Eqs. �3� and �4�� is set as
the following moving direction of the agent �see Fig. 3�. On
the other hand, the absolute velocity should also follow Eq.
�4�. Numerical simulations, as shown in Fig. 4, indicate that
this protocol can effectively scatter the aggregated agents
�take Fig. 2�b� as an example for comparison�. Actually, un-
der this protocol, each agent can hold a certain distance
�much longer than the system mentioned in Sec. II� with its
neighbors, and therefore achieves its maximal speed vmax.

We also investigate the effects of repulsion strength by
adjusting the parameter u. Figure 5�a� shows that the conver-
gence of moving direction is not sensitive to the repulsion
strength. However, a larger value of u corresponds to a
shorter time for the system to achieve the consensus of
speed, as well as a higher average speed in the steady state
�see Figs. 5�b� and 5�c��. Considering Eq. �4�, the larger av-
erage speed actually implies that the average distance be-
tween agents is longer. Note that when u=0, Vb cannot ap-
proach 0, and the average speed is very low.

IV. CONCLUSION AND DISCUSSION

As long as we consider the sizes of agents, it is not only
possible but actually necessary to propose a protocol to avoid

FIG. 3. �Color online� Illustration of the motion protocol with
repulsive effect.

FIG. 4. The distribution of positions and velocities at 500th time
step in the scattering model. The parameters are set as L=5, N
=300, r=1, vmax=0.03, and a=0.01. The length and direction of an
arrow represent the absolute value and direction of the correspond-
ing agent’s velocity.
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collisions among them. Although the Vicsek model �18� has
achieved a great success in mimicking the self-driven swarm,
it cannot guarantee the absence of collisions. We report in
Fig. 6 a simple simulation of the noise-free Vicsek model
neglecting the sizes of agents. As the population grows, in
the stable state, the minimal geographical distance between
pairs of agents decreases quickly. If the size of agent is set as
a=0.01, then the minimal distance to avoid collisions must
be larger than 2a=0.02. That is to say, the standard Vicsek
model can only hold less than 200 agents with size of 0.01 in
a 5	5 square. In comparison, the current model with adap-
tive speed can hold thousands of such agents.

However, numerical simulations showed an aggregation
phenomenon in the current model, which impedes the con-
vergence of speed. To overcome this blemish, we define a
repulsion to scatter the aggregated agents. The simulation
results are exciting: each agent can hole a certain personal
space. What is more, they can quickly achieve speed consen-
sus and move in a very high speed. Numerical results also
indicate that the stronger the repulsive effect is, the less con-

vergence time it takes to achieve the consensus. In Sec. II,
we have already proved that even when two neighbors mu-
tually approach, the adaptive strategy can still help to avoid
possible collision. Therefore, in any event, collision will
never occur in the scattering model.

Furthermore, it is well known that the thermal noise can
also play a significant role in determining the moving direc-
tions of agents. Thus, we need to check whether our rule is
robust in the presence of noise. The numerical result indi-
cates that even in the noisy environment, in the stable state,
the average distance and average speed are both larger than
those without the repulsion. The order parameter for direc-
tion consensus of course decreases with the increase in noise
strength �, and it exhibits almost the same trend as the stan-
dard Vicsek model �actually, it is a little bit larger than the
Vicsek model; see please the simulation result shown in Fig.
7�.

In the noise-free Vicsek model, given r and L, the conver-
gence is faster with more agents �i.e., larger N� since they
will have more frequent communications in a denser circum-
stance. Actually, a recent numerical study �28� indicates that
the convergence time scales approximately as �ln N�−1.3; that
is, the larger the population is, the shorter the convergence
time is. In Fig. 8, we report the simulation result on the
convergence time in the noise-free Vicsek model �see the

(a)

(b)

(c)

FIG. 5. �Color online� Va, Vb, and the average speed versus time
steps under different repulsion strengths. The parameters are set as
L=5, N=300, r=1, vmax=0.03, and a=0.01. All the data come from
the average results of 500 independent runs.

FIG. 6. Minimal geographical distance between pairs of agent in
the stable state of the standard Vicsek model, dmin, versus the num-
ber of agents, N. Each data point is the average of 1000 independent
runs. The restriction to avoid collisions with agent size a=0.01
corresponds to dmin
0.02.

FIG. 7. �Color online� Comparison of order parameters Va in the
Vicsek model and the scattering model under noisy environment.
The parameters are set as L=5, N=300, r=1, and vmax=0.03. In
scattering model, u=0.01 and a=0.01. All the data come from the
average over 500 independent runs.
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blue dashed curve�, where the threshold quantile is set as
Va=0.99. It decreases monotonously with the increase in N,
in accordance with Ref. �28�. In contrast, in the present scat-
tering model, more effort should be taken to avoid collisions
in the denser circumstance. Figure 8 compares the conver-
gence times between the standard Vicsek model and the scat-
tering model in the absence of noise. One can find that in the
sparse circumstance, N�600, the convergence times of the
Vicsek model and the scattering model are almost the same,
while in the denser range, the convergence time in the scat-
tering model quickly increases versus the slow decrease in
that in the Vicsek model. The convergence time for absolute
velocity increases even most quickly than that for moving
direction. This result indicates a limitation of the present
model, namely, it cannot efficiently deal with the systems
with huge population. Accordingly, how to design an effi-
cient method to simultaneously guarantee the absence of col-

lisions and the quick convergence is still an open problem for
us. Anyway, in the case of a=0.01, the standard Vicsek
model can avoid the collisions only if the number of agents
is less than or about 100 �see Fig. 6�, while the scattering
model can hold about 600 agents with the same speed of
convergence. We therefore believe that the scattering model
can find applications in the design of motion protocol for
self-driven agents.

Some difficult yet important problems about the conser-
vative model remain to be further explored. For example, if
the ahead ones of a group of agents need not pay attention to
the following ones �that is, each agent only receives infor-
mation in a sector ahead in its moving direction rather than
all the neighbors within its sight radius �41��, collisions may
automatically disappear. If the swarm needs shorter time to
get convergence while avoiding the collisions, it may indi-
cate that the complete communication is not always the most
efficient manner while partial communication may be better
in some cases �29,41�. In addition, the properties of the phase
transition induced by the noise �see, for example, in Ref.
�34�, Grégoire and Chaté showed that a swarm model with
repulsion as well as the minimal Vicsek model suffers a dis-
continuous phase transition� remains an open issue. Though
not the focus in this article, it is worth a detailed investiga-
tion in the future.
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