11 research outputs found

    PPARgamma Deficiency Counteracts Thymic Senescence

    Get PDF
    Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue

    SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Association between rectal or colon cancer risk and serine hydroxymethyltransferase 1 (<it>SHMT1</it>) C1420T or methylenetetrahydrofolate reductase (<it>MTHFR</it>) C677T polymorphisms was assessed. The serum total homocysteine (HCY), marker of folate metabolism was also investigated.</p> <p>Methods</p> <p>The <it>SHMT1 </it>and <it>MTHFR </it>genotypes were determined by real-time PCR and PCR-RFLP, respectively in 476 patients with rectal, 479 patients with colon cancer and in 461 and 478, respective controls matched for age and sex. Homocysteine levels were determined by HPLC kit. The association between polymorphisms and cancer risk was evaluated by logistic regression analysis adjusted for age, sex and body mass index. The population stratification bias was also estimated.</p> <p>Results</p> <p>There was no association of genotypes or diplotypes with colon cancer. The rectal cancer risk was significantly lower for <it>SHMT1 </it>TT (OR = 0.57, 95% confidence interval (CI) 0.36-0.89) and higher for <it>MTHFR </it>CT genotypes (OR = 1.4, 95%CI 1.06-1.84). A gene-dosage effect was observed for <it>SHMT1 </it>with progressively decreasing risk with increasing number of T allele (p = 0.014). The stratified analysis according to age and sex revealed that the association is mainly present in the younger (< 60 years) or male subgroup. As expected from genotype analysis, the <it>SHMT1 </it>T allele/<it>MTHFR </it>CC diplotype was associated with reduced rectal cancer risk (OR 0.56, 95%CI 0.42-0.77 vs all other diplotypes together). The above results are unlikely to suffer from population stratification bias. In controls HCY was influenced by <it>SHMT1 </it>polymorphism, while in patients it was affected only by Dukes' stage. In patients with Dukes' stage C or D HCY can be considered as a tumor marker only in case of <it>SHMT1 </it>1420CC genotypes.</p> <p>Conclusions</p> <p>A protective effect of <it>SHMT1 </it>1420T allele or <it>SHMT1 </it>1420 T allele/<it>MTHFR </it>677 CC diplotype against rectal but not colon cancer risk was demonstrated. The presence of <it>SHMT1 </it>1420 T allele significantly increases the HCY levels in controls but not in patients. Homocysteine could be considered as a tumor marker in <it>SHMT1 </it>1420 wild-type (CC) CRC patients in Dukes' stage C and D. Further studies need to clarify why <it>SHMT1 </it>and <it>MTHFR </it>polymorphisms are associated only with rectal and not colon cancer risk.</p

    Variability in the Effect of 5-HTTLPR on Depression in a Large European Population: The Role of Age, Symptom Profile, Type and Intensity of Life Stressors.

    Get PDF
    BACKGROUND: Although 5-HTTLPR has been shown to influence the risk of life stress-induced depression in the majority of studies, others have produced contradictory results, possibly due to weak effects and/or sample heterogeneity. METHODS: In the present study we investigated how age, type and intensity of life-stressors modulate the effect of 5-HTTLPR on depression and anxiety in a European population cohort of over 2300 subjects. Recent negative life events (RLE), childhood adversity (CHA), lifetime depression, Brief Symptoms Inventory (BSI) depression and anxiety scores were determined in each subject. Besides traditional statistical analysis we calculated Bayesian effect strength and relevance of 5-HTTLPR genotypes in specified models. RESULTS: The short (s) low expressing allele showed association with increased risk of depression related phenotypes, but all nominally significant effects would turn to non-significant after correction for multiple testing in the traditional analysis. Bayesian effect strength and relevance analysis, however, confirmed the role of 5-HTTLPR. Regarding current (BSI) and lifetime depression 5-HTTLPR-by-RLE interactions were confirmed. Main effect, with other words direct association, was supported with BSI anxiety. With more frequent RLE the prevalence or symptoms of depression increased in ss carriers. Although CHA failed to show an interaction with 5-HTTLPR, in young subjects CHA sensitized towards the depression promoting effect of even mild RLE. Furthermore, the direct association of anxiety with the s allele was driven by young (</=30) individuals. LIMITATIONS: Our study is cross-sectional and applies self-report questionnaires. CONCLUSIONS: Albeit 5-HTTLPR has only weak/moderate effects, the s allele is directly associated with anxiety and modulates development of depression in homogeneous subgroups

    Study Of The Distribution Of Daily Fluctuations In Observed Solar Irradiances And Other Full Disk Indices Of Solar Activity

    No full text
    . Analyses based on irradiance observations from space within the last one and a half decades have discovered variations in the entire solar spectrum and at UV wavelengths on time scales of minutes to decades. In this paper we analyze the distribution of the measuring uncertainties and daily fluctuations in total solar irradiance measured by the Nimbus-7/ERB and SMM/ACRIM I radiometers as a function of solar cycle. Changes in solar total irradiance and its surrogates shorter than the solar rotation have also been considered as &quot;noise&quot; and have been removed from the data. Our results show that the noise (both instrumental and solar noise) changes as a function of the solar cycle, being higher during high solar activity conditions. The analysis of the scatter plot diagrams between the data and their standard deviation, the so-called &quot;dispersion diagrams&quot;, provides a useful tool to estimate and predict the time of solar maximum and minimum activity conditions. 1. Introduction For more th..

    Estimating Long-Term Solar Irradiance Variability: A New Approach

    No full text
    . The detection of solar irradiance variations (both bolometric and at various wavelengths) by satellite-based experiments during the last one and a half decades stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data for those time intervals when no satellite observations exist. In this paper we present estimates of the long-term irradiance changes developed with Fourier and wavelet transforms. The month-to-month irradiance variations, after removing the solar cycle related long-term changes, are studied with the cross-correlation technique. Results of the analysis reveal a significant phase shift at 3 months between the full disk magnetic field strength and total solar and UV irradiance, with irradiance leading the magnetic field variability. In addition to this time delay between the changes in solar irradiance and the magnetic field, a 10-month phase shift has been found between the UV flux at 280 nm and total solar irradiance corrected..

    PPARgamma Deficiency Counteracts Thymic Senescence

    No full text
    Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose–response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue
    corecore