2,058 research outputs found
Dynamics and control of the satellite power system
An investigation of the dynamics and control problems specifically related to the Satellite Power System (SPS), to assess performance of selected control concepts, and to identify and initiate development of advanced control technology that would enhance feasibility and performance of the SPS system was made. The initial stages of the study are reported
A comparative overview of modal testing and system identification for control of structures
A comparative overview is presented of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given, and the basic methods are described briefly. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures
Dynamic analysis of the GEOS satellite
The assumed modes method is used to investigate the stability of the GEOS satellite. The system is discretized by representing the continuous displacement by finite series of space-dependent admissible functions multiplied by time-dependent generalized coordinates. The spatial dependence is eliminated by integration over the elastic domains, so that the testing functional reduces to a testing function. The sign properties of the testing function are then tested and the equilibrium defined as nontrivial. In considering the stability of small motions about nontrivial equilibrium, it is shown that if the analysis performed by ignoring the motion of the mass center indicates stability, then the system remains stable if the motion of the mass center is included
Comparison of several system identification methods for flexible structures
In the last few years various methods of identifying structural dynamics models from modal testing data have appeared. A comparison is presented of four of these algorithms: the Eigensystem Realization Algorithm (ERA), the modified version ERA/DC where DC indicated that it makes use of data correlation, the Q-Markov Cover algorithm, and an algorithm due to Moonen, DeMoor, Vandenberghe, and Vandewalle. The comparison is made using a five mode computer module of the 20 meter Mini-Mast truss structure at NASA Langley Research Center, and various noise levels are superimposed to produced simulated data. The results show that for the example considered ERA/DC generally gives the best results; that ERA/DC is always at least as good as ERA which is shown to be a special case of ERA/DC; that Q-Markov requires the use of significantly more data than ERA/DC to produce comparable results; and that is some situations Q-Markov cannot produce comparable results
Penerimaan Guru Sekolah Dasar Terhadap Ujian Nasional Dalam Film Serdadu Kumbang
Penelitian ini bertujuan untuk mengetahui penerimaan guru sekolah dasar terhadap Ujian Nasional dalam film Serdadu Kumbang. Film ini merupakan salah satu film tentang pendidikan yang mengangkat masalah Ujian Nasional. Metode yang digunakan dalam penelitian ini adalah analisis penerimaan. Penelitian jenis deskriptif kualitatif ini memberikan gambaran bagaimana informan yang berprofesi sebagai guru menerima pesan mengenai Ujian Nasional yang ada dalam film Serdadu Kumbang.Hasil penelitian ini menggambarkan bahwa pemaknaan yang diberikan informan dipengaruhi oleh latar belakang pemahaman dan pengalaman mereka masing-masing. Informan pertama dan ketiga memiliki penerimaan opposisional, sedangkan informan kedua memiliki penerimaan negosiasi. Penerimaan kedua informan tersebut dilatarbelakangi oleh pengalaman mereka yang sama-sama pernah mengajar di daerah dan kini bertugas di kota. Sedangkan informan ketiga dilatarbelakangi oleh pengalamannya mengajar di daerah dengan lingkungan sosial dan keadaan ekonomi yang terbatas menyebabkan informan minim mengonsumsi media dan tidak berkembang, sehingga kondisi tersebut berpengaruh pada penerimaannya terhadap Ujian Nasional dalam film Serdadu Kumbang
Recommended from our members
Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network
A feed-forward neural network is configured to calibrate the bias of a high-resolution probabilistic quantitative precipitation forecast (PQPF) produced by a 12-km version of the NCEP Regional Spectral Model (RSM) ensemble forecast system. Twice-daily forecasts during the 2002-2003 cool season (1 November-31 March, inclusive) are run over four U.S. Geological Survey (USGS) hydrologic unit regions of the southwest United States. Calibration is performed via a cross-validation procedure, where four months are used for training and the excluded month is used for testing. The PQPFs before and after the calibration over a hydrological unit region are evaluated by comparing the joint probability distribution of forecasts and observations. Verification is performed on the 4-km stage IV grid, which is used as "truth." The calibration procedure improves the Brier score (BrS), conditional bias (reliability) and forecast skill, such as the Brier skill score (BrSS) and the ranked probability skill score (RPSS), relative to the sample frequency for all geographic regions and most precipitation thresholds. However, the procedure degrades the resolution of the PQPFs by systematically producing more forecasts with low nonzero forecast probabilities that drive the forecast distribution closer to the climatology of the training sample. The problem of degrading the resolution is most severe over the Colorado River basin and the Great Basin for relatively high precipitation thresholds where the sample of observed events is relatively small. © 2007 American Meteorological Society
Recommended from our members
Short-range probabilistic quantitative precipitation forecasts over the southwest United States by the RSM ensemble system
The National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) is used to produce twice-daily (0000 and 1200 UTC), high-resolution ensemble forecasts to 24 h. The forecasts are performed at an equivalent horizontal grid spacing of 12 km for the period 1 November 2002 to 31 March 2003 over the southwest United States. The performance of 6-h accumulated precipitation is assessed for 32 U.S. Geological Survey hydrologic catchments. Multiple accuracy and skill measures are used to evaluate probabilistic quantitative precipitation forecasts. NCEP stage-IV precipitation analyses are used as "truth," with verification performed on the stage-IV 4-km grid. The RSM ensemble exhibits a ubiquitous wet bias. The bias manifests itself in areal coverage, frequency of occurrence, and total accumulated precipitation over every region and during every 6-h period. The biases become particularly acute starting with the 1800-0000 UTC interval, which leads to a spurious diurnal cycle and the 1200 UTC cycle being more adversely affected than the 0000 UTC cycle. Forecast quality and value exhibit marked variability over different hydrologic regions. The forecasts are highly skillful along coastal California and the windward slopes of the Sierra Nevada Mountains, but they generally lack skill over the Great Basin and the Colorado basin except over mountain peaks. The RSM ensemble is able to discriminate precipitation events and provide useful guidance to a wide range of users over most regions of California, which suggests that mitigation of the conditional biases through statistical postprocessing would produce major improvements in skill. © 2007 American Meteorological Society
Mathematical correlation of modal parameter identification methods via system realization theory
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification
Relation between growth dynamics and the spatial distribution of intrinsic defects in self-assembled colloidal crystal films
Herein we establish a clear relation between the parameters that govern the growth dynamics and the structural quality of colloidal crystal films. We report an optical analysis of the spatial distribution of intrinsic defects in colloidal crystal films and correlate our results with a theoretical model describing the growth dynamics of such lattices. We find that the amount of defects fluctuates periodically and decreases along the growth direction of the lattice. We demonstrate that these spatial variations are a direct consequence of the temporal oscillations of the crystal film formation velocity, which are inherent to the colloidal particle deposition process. © 2008 American Institute of Physics.Peer Reviewe
- …