40 research outputs found

    Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin

    Get PDF
    Nitro-fatty acids (NO2-FAs) are unsaturated fatty acid nitration products that exhibit anti-inflammatory actions in experimental mouse models of autoimmune and allergic diseases. These electrophilic molecules interfere with intracellular signaling pathways by reversible post-translational modification of nucleophilic amino-acid residues. Several regulatory proteins have been identified as targets of NO2-FAs, modifying their activity and promoting gene expression changes that result in anti-inflammatory effects. Herein, we report the effects of nitro-oleic acid (NO2-OA) on pro-inflammatory T cell functions, showing that 9- and 10-NOA, but not their oleic acid precursor, decrease T cell proliferation, expression of activation markers CD25 and CD71 on the plasma membrane, and IL-2, IL-4, and IFN-γ cytokine gene expressions. Moreover, we have found that NO2-OA inhibits the transcriptional activity of nuclear factor of activated T cells (NFAT) and that this inhibition takes place through the regulation of the phosphatase activity of calcineurin (CaN), hindering NFAT dephosphorylation, and nuclear translocation in activated T cells. Finally, using mass spectrometry-based approaches, we have found that NO2-OA nitroalkylates CaNA on four Cys (Cys129, 228, 266, and 372), of which only nitroalkylation on Cys372 was of importance for the regulation of CaN phosphatase activity in cells, disturbing functional CaNA/CaNB heterodimer formation. These results provide evidence for an additional mechanism by which NO2-FAs exert their anti-inflammatory actions, pointing to their potential as therapeutic bioactive lipids for the modulation of harmful T cell-mediated immune response

    Specificity in S-Nitrosylation: a short-range mechanism for NO signaling?

    Get PDF
    Significance: Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. Recent Advances: Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. Critical Issues: We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. Future Directions: Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings. Antioxid. Redox Signal. 19, 1220-1235.Spanish Government [CSD2007-00020, CP07/00143, PS09/00101, SAF2009-7520, PI10/02136]; Spanish-Portuguese Integrated Action Grant [PRI-AIBPT-2011-1015/E-10/12]; Foundation for Science and Technology (FCT, Portugal) [PTDC/SAU-NEU/102612/2008, PTDC/SAU-NMC/112183/2009, PEst-OE/EQB/LA0023/2011]; COST action [BM1005]info:eu-repo/semantics/publishedVersio

    Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes

    Get PDF
    Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as α-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation

    Smoothelin-like 2 Inhibits Coronin-1B to Stabilize the Apical Actin Cortex during Epithelial Morphogenesis

    Get PDF
    The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe Smoothelin-like 2 (SMTNL2) function, a member of the smooth-muscle related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during the development of multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of Coronin-1B. While Coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to Coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular corte

    Nitrosothiols in the immune system: Signaling and protection

    Full text link
    Antioxidants and Redox Signaling 18.3 (2013): 288-308Significance: In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. Recent Advances: Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. Critical Issues: Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. Future Directions: Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapiesFinanced by the Spanish Government grants CSD2007-00020 (RosasNet, Consolider-Ingenio 2010 programme), CP07/00143 (Miguel Servet programme), and PS09/00101; and PI10/0213

    RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation

    Get PDF
    The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation

    Erm proteins at the crossroad of leukocyte polarization, migration and intercellular adhesion

    No full text
    Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.Ministerio de Ciencia Innovación y Universidades (MICIU)/FEDER, grant number RTI2018-100815-B-100 (J.M.S.). We acknowledge support of the publication fee by the Spanish Research Council (CSIC) Open Access Publication Support Initiativ

    eNOS S-nitrosylates ß-actin on Cys374 and regulates PKC-¿ at the immune synapse by impairing actin binding to profilin-1

    No full text
    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-¿ (PKC-¿) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-¿ from the lamellipodium-like distal (d)-SMAC, promoting PKC-¿ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-¿ was corroborated by overexpression of PFN1- and actin-binding defective mutants of ß-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-¿ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.Instituto de Salud Carlos III (ISCIII, Spanish Government)Peer Reviewe

    Óxido nítrico y prostaglandinas ciclopentenona electrofílicas en señalización redox, regulación de la dinámica del citoesqueleto y comunicación intercelular

    Full text link
    Nitric oxide (NO) and electrophilic cyclopentenone prostaglandins (CyPG) are local mediators that modulate cellular response to oxidative stress in different pathophysiological processes. In particular, there is increasing evidence about their functional role during inflammation and immune responses. Although the mechanistic details about their relationship and functional interactions are still far from resolved, NO and CyPG share the ability to promote redox-based post-translational modification (PTM) of proteins that play key roles in cellular homeostasis, signal transduction and transcription. NO-induced S-nitrosylation and S-glutathionylation as well as cyclopentenone-mediated adduct formation, are a few of the main PTMs by which intra- and inter-cellular signaling are regulated. There is a growing body of evidence indicating that actin and actin-binding proteins are susceptible to covalent PTM by these agents. It is well known that the actin cytoskeleton is key for the establishment of interactions among leukocytes, endothelial and muscle cells, enabling cellular activation and migration. In this review we analyze the current knowledge about the actions exerted by NO and CyPG electrophilic lipids on the regulation of actin dynamics and cytoskeleton organization, and discuss some open questions regarding their functional relevance in the regulation of intercellular communication.RTI2018-100815-B-I00 (MICIU/FEDER) to MÍ and JS. We acknowledge support of the publication fee by the Spanish Research Council (CSIC

    Nitrosothiols in the immune system: Signaling and protection

    Get PDF
    Significance: In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. Recent Advances: Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. Critical Issues: Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. Future Directions: Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapies. © 2013, Mary Ann Liebert, Inc.Spanish Government (CSD2007-00020); (RosasNet, Consolider-Ingenio 2010 programme); CP07/00143 (Miguel Servet programme); PS09/00101; PI10/02136Peer Reviewe
    corecore