7 research outputs found

    Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells

    Get PDF
    Oxidative stress is a main molecular mechanism that underlies cardiovascular diseases. A close relationship between reactive oxygen species (ROS) derived from NADPH oxidase (NOX) activity and the prostaglandin (PG) biosynthesis pathway has been described. However, little information is available about the interaction between NOX5 homolog-derived ROS and the PG pathway in the cardiovascular context. Our main goal was to characterize NOX5-derived ROS effects in PG homeostasis and their potential relevance in cardiovascular pathologies. For that purpose, two experimental systems were employed: an adenoviral NOX5-β overexpression model in immortalized human aortic endothelial cells (TeloHAEC) and a chronic infarction in vivo model developed from a conditional endothelial NOX5 knock-in mouse. NOX5 increased cyclooxygenase-2 isoform (COX-2) expression and prostaglandin E2 (PGE2) production through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in TeloHAEC. Protein kinase C (PKC) activation and intracellular calcium level (Ca++) mobilization increased ROS production and NOX5 overexpression, which promoted a COX-2/PGE2 response in vitro. In the chronic infarction model, mice encoding endothelial NOX5 enhanced the cardiac mRNA expression of COX-2 and PGES, suggesting a COX-2/PGE2 response to NOX5 presence in an ischemic situation. Our data support that NOX5-derived ROS may modulate the COX-2/PGE2 axis in endothelial cells, which might play a relevant role in the pathophysiology of heart infarction

    Monitoring Caenorhabditis elegans molting in a conventional luminometer

    No full text
    Molting is an essential developmental process in Caenorhabditis elegans. However, the study of molting in the worm has been limited by the lack of automated techniques that allow monitoring the process in a simple way. In 2015, Olmedo et al. published an automated method to monitor the timing of each larval stage and molt in C. elegans using bioluminescence. This new method has greatly contributed to the study of molting in this organism but requires the use of a high-sensitivity luminometer, which many laboratories do not have. We have adapted the method to a conventional luminometer, so that it can be used by most laboratories that work with C. elegans and do not have high-sensitivity equipment. • A customization of a method to study molting in C. elegans using a conventional luminometer instead of a high-sensitivity one. • This adaptation allows most laboratories to use their routine luminometers to study molting in C. elegans. • Although the use of a high-sensitivity luminometer, as proposed by Olmedo et al., remains the gold standard for studying molting, this adaptation is suitable for studying significant differences in molting and the duration of larval stages between different strains of C. elegans

    Use of Biomarkers to Improve 28-Day Mortality Stratification in Patients with Sepsis and SOFA ≤ 6

    Get PDF
    Early diagnosis and appropriate treatments are crucial to reducing mortality risk in septic patients. Low SOFA scores and current biomarkers may not adequately discern patients that could develop severe organ dysfunction or have an elevated mortality risk. The aim of this prospective observational study was to evaluate the predictive value of the biomarkers mid-regional pro-adrenomedullin (MR-proADM), procalcitonin (PCT), C-reactive protein (CRP), and lactate for 28-day mortality in patients with sepsis, and patients with a SOFA score ≤6. 284 were included, with a 28-day all-cause mortality of 8.45% (n = 24). Non-survivors were older (p = 0.003), required mechanical ventilation (p = 0.04), were ventilated for longer (p = 0.02), and had higher APACHE II (p = 0.015) and SOFA (p = 0.027) scores. Lactate showed the highest predictive ability for all-cause 28-day mortality, with an area under the receiver-operating characteristic curve (AUROC) of 0.67 (0.55-0.79). The AUROC for all-cause 28-day mortality in patients with community-acquired infection was 0.69 (0.57-0.84) for SOFA and 0.70 (0.58-0.82) for MR-proADM. A 2.1 nmol/L cut-off point for this biomarker in this subgroup of patients discerned, with 100% sensibility, survivors from non-survivors at 28 days. In patients with community-acquired sepsis and initial SOFA score ≤ 6, MR-proADM could help identify patients at risk of 28-day mortality

    Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells

    No full text
    Oxidative stress is a main molecular mechanism that underlies cardiovascular diseases. A close relationship between reactive oxygen species (ROS) derived from NADPH oxidase (NOX) activity and the prostaglandin (PG) biosynthesis pathway has been described. However, little information is available about the interaction between NOX5 homolog-derived ROS and the PG pathway in the cardiovascular context. Our main goal was to characterize NOX5-derived ROS effects in PG homeostasis and their potential relevance in cardiovascular pathologies. For that purpose, two experimental systems were employed: an adenoviral NOX5-β overexpression model in immortalized human aortic endothelial cells (TeloHAEC) and a chronic infarction in vivo model developed from a conditional endothelial NOX5 knock-in mouse. NOX5 increased cyclooxygenase-2 isoform (COX-2) expression and prostaglandin E2 (PGE2) production through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in TeloHAEC. Protein kinase C (PKC) activation and intracellular calcium level (Ca++) mobilization increased ROS production and NOX5 overexpression, which promoted a COX-2/PGE2 response in vitro. In the chronic infarction model, mice encoding endothelial NOX5 enhanced the cardiac mRNA expression of COX-2 and PGES, suggesting a COX-2/PGE2 response to NOX5 presence in an ischemic situation. Our data support that NOX5-derived ROS may modulate the COX-2/PGE2 axis in endothelial cells, which might play a relevant role in the pathophysiology of heart infarction
    corecore