11 research outputs found

    LoXL4 is induced by transforming growth factor β1 through Smad and JunB/Fra2 and contributes to vascular matrix remodeling

    Get PDF
    Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)- dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis.This work was supported by grants from the Ministerio de Economía y Competitividad (Plan Nacional de I+D+I: SAF2009-09085, SAF2012-34916), Comunidad Autónoma de Madrid (2010-BMD2321, FIBROTEAM Consortium), Fundación Genoma España (MEICA project), Consejo Superior de Investigaciones Científicas (Proyecto Intramural de Incorporación, 200920I158), and Fundación Renal Iñigo Alvárez de Toledo. O.B. is a recipient of a fellowship from the Ministerio de Economía y Competi- tividad (Formación de Personal Investigador)Peer Reviewe

    Papel de ATM en la ruta de transducción de señales P13k/Akt: implicaciones en la patología de la ataxia telangiectasia

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura: 28 de Octubre de 200

    Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2.

    Get PDF
    Altered epidermal differentiation characterizes numerous skin diseases affecting >25% of the human population. Here we identified Fra-2/AP-1 as a key regulator of terminal epidermal differentiation. Epithelial-restricted, ectopic expression of Fra-2 induced expression of epidermal differentiation genes located within the epidermal differentiation complex (EDC). Moreover, in a papilloma-prone background, a reduced tumor burden was observed due to precocious keratinocyte differentiation by Fra-2 expression. Importantly, loss of Fra-2 in suprabasal keratinocytes is sufficient to cause skin barrier defects due to reduced expression of differentiation genes. Mechanistically, Fra-2 binds and transcriptionally regulates EDC gene promoters, which are co-occupied by the transcriptional repressor Ezh2. Fra-2 remains transcriptionally inactive in nondifferentiated keratinocytes, where it was found monomethylated and dimethylated on Lys104 and interacted with Ezh2. Upon keratinocyte differentiation, Fra-2 is C-terminally phosphorylated on Ser320 and Thr322 by ERK1/2, leading to transcriptional activation. Thus, the induction of epidermal differentiation by Fra-2 is controlled by a dual mechanism involving Ezh2-dependent methylation and activation by ERK1/2-dependent phosphorylation.We thank Dr. Falk Weih for providing FoxN1 Cre transgenic mice, and Dr. David Santamaria for providing lentiviral expression plasmids. We are very grateful to the members of the Wagner and Ezhkova laboratory for constructive input and criticism. S.W. is funded by a FPU predoctoral fellowship from the Spanish Ministry of Education and a BIF travel fellowship. E.F.W is funded by the Banco Bilbao Vizcaya Argentaria (BBVA) Foundation and a European Research Council Advanced Grant (ERC FCK/2008/37). J.Z. is supported by the Shandong Provincial Natural Science Foundation, China. J.G.-V. is supported by the Spanish Ministry of Education (SAF2012_39670). J.M. is supported by Ramon y Cajal Programme (MINECO, RYC-2012-10651). The CNIO Proteomics Unit belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001. E.E. is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (R01 AR063724).S

    TNFα shedding and epidermal inflammation are controlled by Jun proteins

    No full text
    Inducible epidermal deletion of JunB and c-Jun in adult mice causes a psoriasis-like inflammatory skin disease. Increased levels of the proinflammatory cytokine TNFα play a major role in this phenotype. Here we define the underlying molecular mechanism using genetic mouse models. We show that Jun proteins control TNFα shedding in the epidermis by direct transcriptional activation of tissue inhibitor of metalloproteinase-3 (TIMP-3), an inhibitor of the TNFα-converting enzyme (TACE). TIMP-3 is down-regulated and TACE activity is specifically increased, leading to massive, cell-autonomous TNFα shedding upon loss of both JunB and c-Jun. Consequently, a prominent TNFα-dependent cytokine cascade is initiated in the epidermis, inducing severe skin inflammation and perinatal death of newborns from exhaustion of energy reservoirs such as glycogen and lipids. Importantly, this metabolic “cachectic” phenotype can be genetically rescued in a TNFR1-deficient background or by epidermis-specific re-expression of TIMP-3. These findings reveal that Jun proteins are essential physiological regulators of TNFα shedding by controlling the TIMP-3/TACE pathway. This novel mechanism describing how Jun proteins control skin inflammation offers potential targets for the treatment of skin pathologies associated with increased TNFα levels

    Modulation of the p38 MAPK (mitogen-activated protein kinase) pathway through Bcr/Abl: implications in the cellular response to Ara-C

    No full text
    The chimaeric protein Bcr/Abl, the hallmark of chronic myeloid leukaemia, has been connected with several signalling pathways, such as those involving protein kinase B/Akt, JNK (c-Jun N-terminal kinase) or ERKs (extracellular-signal-regulated kinases) 1 and 2. However, no data about the p38 MAPK (mitogen-activated protein kinase) have been reported. Here, we present evidence showing that Bcr/Abl is able to modulate this signalling pathway. Transient transfection experiments indicated that overexpression of Bcr/Abl in 293T cells is able to activate p38 MAPK or induce p73 stabilization, suggesting that c-Abl and Bcr/Abl share some biological substrates. Interestingly, the control exerted by Bcr/Abl on the p38 MAPK pathway was not only mediated by the tyrosine kinase activity of Bcr/Abl, as the use of STI571 demonstrated. In fact, Bcr alone was able to induce p38 MAPK activation specifically through MKK3 (MAP kinase kinase 3). Supporting these observations, chronic myeloid leukaemia-derived K562 cells or BaF 3 cells stably transfected with Bcr/Abl showed higher levels of phosphorylated p38 MAPK compared with Bcr/Abl-negative cells. While Bcr/Abl-negative cells activated p38 MAPK in response to Ara-C (1-β-D-arabinofuranosylcytosine), Bcr/Abl-positive cells were unable to activate p38 MAPK, suggesting that the p38 MAPK pathway is not sensitive to Abl-dependent stimuli in Bcr/Abl-positive cells. Our results demonstrate that the involvement of Bcr/Abl in the p38 MAPK pathway is a key mechanism for explaining resistance to Ara-C, and could provide a clue for new therapeutic approaches based on the use of specific Abl inhibitors

    EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer

    Get PDF
    The Notch1 gene has an important role in mammalian cell-fate decision and tumorigenesis. Upstream control mechanisms for transcription of this gene are still poorly understood. In a chemical genetics screen for small molecule activators of Notch signalling, we identified epidermal growth factor receptor (EGFR) as a key negative regulator of Notch1 gene expression in primary human keratinocytes, intact epidermis and skin squamous cell carcinomas (SCCs). The underlying mechanism for negative control of the Notch1 gene in human cells, as well as in a mouse model of EGFR-dependent skin carcinogenesis, involves transcriptional suppression of p53 by the EGFR effector c-Jun. Suppression of Notch signalling in cancer cells counteracts the differentiation-inducing effects of EGFR inhibitors while, at the same time, synergizing with these compounds in induction of apoptosis. Thus, our data reveal a key role of EGFR signalling in the negative regulation of Notch1 gene transcription, of potential relevance for combinatory approaches for cancer therapy

    A miR-34a-SIRT6 axis in the squamous cell differentiation network

    Full text link
    Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours
    corecore