5 research outputs found

    Maternal Colonization With Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses.

    Get PDF
    Background: Maternal rectovaginal colonization with group B Streptococcus (GBS) is the most common pathway for GBS disease in mother, fetus, and newborn. This article, the second in a series estimating the burden of GBS, aims to determine the prevalence and serotype distribution of GBS colonizing pregnant women worldwide. Methods: We conducted systematic literature reviews (PubMed/Medline, Embase, Latin American and Caribbean Health Sciences Literature [LILACS], World Health Organization Library Information System [WHOLIS], and Scopus), organized Chinese language searches, and sought unpublished data from investigator groups. We applied broad inclusion criteria to maximize data inputs, particularly from low- and middle-income contexts, and then applied new meta-analyses to adjust for studies with less-sensitive sampling and laboratory techniques. We undertook meta-analyses to derive pooled estimates of maternal GBS colonization prevalence at national and regional levels. Results: The dataset regarding colonization included 390 articles, 85 countries, and a total of 299924 pregnant women. Our adjusted estimate for maternal GBS colonization worldwide was 18% (95% confidence interval [CI], 17%-19%), with regional variation (11%-35%), and lower prevalence in Southern Asia (12.5% [95% CI, 10%-15%]) and Eastern Asia (11% [95% CI, 10%-12%]). Bacterial serotypes I-V account for 98% of identified colonizing GBS isolates worldwide. Serotype III, associated with invasive disease, accounts for 25% (95% CI, 23%-28%), but is less frequent in some South American and Asian countries. Serotypes VI-IX are more common in Asia. Conclusions: GBS colonizes pregnant women worldwide, but prevalence and serotype distribution vary, even after adjusting for laboratory methods. Lower GBS maternal colonization prevalence, with less serotype III, may help to explain lower GBS disease incidence in regions such as Asia. High prevalence worldwide, and more serotype data, are relevant to prevention efforts

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Maternal Colonization With Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses

    No full text
    Background Maternal rectovaginal colonization with group B Streptococcus (GBS) is the most common pathway for GBS disease in mother, fetus, and newborn. This article, the second in a series estimating the burden of GBS, aims to determine the prevalence and serotype distribution of GBS colonizing pregnant women worldwide. Methods We conducted systematic literature reviews (PubMed/Medline, Embase, Latin American and Caribbean Health Sciences Literature [LILACS], World Health Organization Library Information System [WHOLIS], and Scopus), organized Chinese language searches, and sought unpublished data from investigator groups. We applied broad inclusion criteria to maximize data inputs, particularly from low- and middle-income contexts, and then applied new meta-analyses to adjust for studies with less-sensitive sampling and laboratory techniques. We undertook meta-analyses to derive pooled estimates of maternal GBS colonization prevalence at national and regional levels. Results The dataset regarding colonization included 390 articles, 85 countries, and a total of 299924 pregnant women. Our adjusted estimate for maternal GBS colonization worldwide was 18% (95% confidence interval [CI], 17%–19%), with regional variation (11%–35%), and lower prevalence in Southern Asia (12.5% [95% CI, 10%–15%]) and Eastern Asia (11% [95% CI, 10%–12%]). Bacterial serotypes I–V account for 98% of identified colonizing GBS isolates worldwide. Serotype III, associated with invasive disease, accounts for 25% (95% CI, 23%–28%), but is less frequent in some South American and Asian countries. Serotypes VI–IX are more common in Asia. Conclusions GBS colonizes pregnant women worldwide, but prevalence and serotype distribution vary, even after adjusting for laboratory methods. Lower GBS maternal colonization prevalence, with less serotype III, may help to explain lower GBS disease incidence in regions such as Asia. High prevalence worldwide, and more serotype data, are relevant to prevention efforts

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore