26 research outputs found

    Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis

    Get PDF
    Background: Insects are associated with microorganisms that contribute to the digestion and processing of nutrients. The European Corn Borer (ECB) is a moth present world-wide, causing severe economical damage as a pest on corn and other crops. In the present work, we give a detailed view of the complexity of the microorganisms forming the ECB midgut microbiota with the objective of comparing the biodiversity of the midgut-associated microbiota and explore their potential as a source of genes and enzymes with biotechnological applications. Methodological/Principal Findings: A high-throughput sequencing approach has been used to identify bacterial species, genes and metabolic pathways, particularly those involved in plant-matter degradation, in two different ECB populations (field-collected vs. lab-reared population with artificial diet). Analysis of the resulting sequences revealed the massive presence of Staphylococcus warneri and Weissella paramesenteroides in the lab-reared sample. This enabled us to reconstruct both genomes almost completely. Despite the apparently low diversity, 208 different genera were detected in the sample, although most of them at very low frequency. By contrast, the natural population exhibited an even higher taxonomic diversity along with a wider array of cellulolytic enzyme families. However, in spite of the differences in relative abundance of major taxonomic groups, not only did both metagenomes share a similar functional profile but also a similar distribution of non-redundant genes in different functional categories. Conclusions/Significance: Our results reveal a highly diverse pool of bacterial species in both O. nubilalis populations, with major differences: The lab-reared sample is rich in gram-positive species (two of which have almost fully sequenced genomes) while the field sample harbors mainly gram-negative species and has a larger set of cellulolytic enzymes. We have found a clear relationship between the diet and the midgut microbiota, which reveals the selection pressure of food on the community of intestinal bacteria. © 2011 Belda et al.The research was funded by the Spanish Ministerio de Ciencia e Innovacion, under grant agreement CIT-010000-2008-5 and by a MICINN (Ministerio de Ciencia e Innovacion) TIN2009-12359 ArtBioCom project. Arnau Montagud acknowledges Generalitat Valenciana grant BFPI/2007/283. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Belda Cuesta, EA.; Pedrola, L.; Peretó Magraner, J.; Martinez Blanch, JF.; Montagud Aquino, A.; Navarro-Peris, E.; Urchueguía Schölzel, JF.... (2011). Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis. PLoS ONE. 6(6):21751-21751. https://doi.org/10.1371/journal.pone.0021751S21751217516

    Sample and library preparation approaches for the analysis of the virome of irrigation water

    No full text
    The virome (i.e. community of mainly RNA and DNA eukaryotic viruses and bacteriophages) of waters is yet to be extensively explored. In particular, the virome of waters used for irrigation could therefore potentially carry viral pathogens that can contaminate fresh produce. One problem in obtaining viral sequences from irrigation waters is the relatively low amount of virus particles, as well as the presence of human, bacterial and protozoan cells. The present aimed study was to compare different processing, amplification, and sequencing approaches for virome characterization in irrigation waters.This study was supported by the ‘VIRIDIANA’ project AGL2017-82909 (AEI/FEDER, UE) funded by Spanish Ministry of Science, Innovation and Universities; the ‘MAGIC’ project from the Center of Produce Safety (CPS, no. 2018CPS10); and the APOTI grant (APOTIP/2018/007) from the Generalitat Valenciana. IATA-CSIC is a Centre of Excellence Severo Ochoa (CEX2021-001189-S MCIN/AEI/10.13039/501100011033). AP-C is recipient of a postdoctoral grant from the Generalitat Valenciana (APOSTD/2021/292).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2021-001189-S).Peer reviewe

    Study of the Vaginal Microbiota in Healthy Women of Reproductive Age

    No full text
    Understanding the characteristics of the vaginal microbiota of our patients allows us to carry out both a personalized therapeutic approach and a closer follow-up in those with microbiota susceptible to dysbiosis. This trial pursues the analysis of the vaginal microbiota of premenopausal women and its fluctuations within a four-week follow-up period. Vaginal samples of 76 fertile women were taken at a baseline visit and at a final visit (day 28 ± 5). To perform a phylogenetic study, we employed massive sequencing techniques to detect the 16S rRNA gene of the vaginal microbiota. The most prevalent vaginal microbial community was type I (34.87%), dominated by Lactobacillus crispatus. Vaginal microbial community types II (Lactobacillus gasseri) and V (Lactobacillus jensenii) were underrepresented in our population. When repeating the sampling process four weeks later, 75% of our patients maintained their initial bacterial community. In the follicular phase, the most recurrent microbiota was type III (Lactobacillus iners); in the periovulatory phase, types III and IV (microbial diversity); finally, in the luteal phase, the most frequent type was IV. The most prevalent vaginal bacterial community in our population was dominated by L. crispatus. The vaginal microbiota was resistant to changes in its bacterial community in 75% of our patients, even between consecutive menstrual cycles

    Deciphering the role of cartilage protein 1 in human dermal fibroblasts: a transcriptomic approach

    No full text
    Cartilage acidic protein 1A (hCRTAC1-A) is an extracellular matrix protein (ECM) of human hard and soft tissue that is associated with matrix disorders. The central role of fibroblasts in tissue integrity and ECM health made primary human dermal fibroblasts (NHDF) the model for the present study, which aimed to provide new insight into the molecular function of hCRTAC1-A. Specifically, we explored the differential expression patterns of specific genes associated with the presence of hCRTAC1-A by RNA-seq and RT-qPCR analysis. Functional enrichment analysis demonstrated, for the very first time, that hCRTAC1-A is involved in extracellular matrix organization and development, through its regulatory effect on asporin, decorin, and complement activity, in cell proliferation, regeneration, wound healing, and collagen degradation. This work provides a better understanding of putative hCRTAC1-A actions in human fibroblasts and a fundamental insight into its function in tissue biology.UID/Multi/04326/2020; DL57/2016/CP1361/CT0011info:eu-repo/semantics/publishedVersio

    Amiloride, an old diuretic drug, is a potential therapeutic agent for multiple myeloma

    No full text
    [Purpose]: The search for new drugs that control the continuous relapses of multiple myeloma is still required. Here, we report for the first time the potent antimyeloma activity of amiloride, an old potassium-sparing diuretic approved for the treatment of hypertension and edema due to heart failure. [Experimental Design]: Myeloma cell lines and primary samples were used to evaluate cytotoxicity of amiloride. In vivo studies were carried out in a xenograft mouse model. The mechanisms of action were investigated using RNA-Seq experiments, qRT-PCR, immunoblotting, and immunofluorescence assays. [Results]: Amiloride-induced apoptosis was observed in a broad panel of multiple myeloma cell lines and in a xenograft mouse model. Moreover, amiloride also had a synergistic effect when combined with dexamethasone, melphalan, lenalidomide, and pomalidomide. RNA-Seq experiments showed that amiloride not only significantly altered the level of transcript isoforms and alternative splicing events, but also deregulated the spliceosomal machinery. In addition, disruption of the splicing machinery in immunofluorescence studies was associated with the inhibition of myeloma cell viability after amiloride exposure. Although amiloride was able to induce apoptosis in myeloma cells lacking p53 expression, activation of p53 signaling was observed in wild-type and mutated TP53 cells after amiloride exposure. On the other hand, we did not find a significant systemic toxicity in mice treated with amiloride. [Conclusions]: Overall, our results demonstrate the antimyeloma activity of amiloride and provide a mechanistic rationale for its use as an alternative treatment option for relapsed multiple myeloma patients, especially those with 17p deletion or TP53 mutations that are resistant to current therapies.This study was partially supported by the Instituto de Salud Carlos III-Cofinanciacion with funding from FEDER (PI13/00111 and PI16/01074), Asociacion Española Contra el Cancer (AECC, GCB120981SAN), Gerencia Regional de Salud, Junta de Castilla y Leon (BIO/SA57/13 and BIO/SA22/15), and the INNOCAMPUS Program (CEI10-1-0010). I. Misiewicz-Krzeminska was supported by a Black Swan R esearch Initiative grant from the International Myeloma Foundation. L.A. Corchete was supported by a grant from the Fundacion Española de Hematología y Hemoterapia.Peer Reviewe

    Taxane-induced attenuation of the CXCR2/BCL-2 axis aensitizes prostate cancer to platinum-based treatment

    Get PDF
    Background: Taxanes are the most active chemotherapy agents in metastatic castration-resistant prostate cancer (mCRPC) patients; yet, resistance occurs almost invariably, representing an important clinical challenge. Taxane-platinum combinations have shown clinical benefit in a subset of patients, but the mechanistic basis and biomarkers remain elusive. Objective: To identify mechanisms and response indicators for the antitumor efficacy of taxane-platinum combinations in mCRPC. Design, setting, and participants: Transcriptomic data from a publicly available mCRPC dataset of taxane-exposed and taxane-naïve patients were analyzed to identify response indicators and emerging vulnerabilities. Functional and preclinical validation was performed in taxane-resistant mCRPC cell lines and genetically engineered mouse models (GEMMs). Intervention: Metastatic CRPC cells were treated with docetaxel, cisplatin, carboplatin, the CXCR2 antagonist SB265610, and the BCL-2 inhibitor venetoclax. Gain and loss of function in culture of CXCR2 and BCL-2 were achieved by overexpression or siRNA silencing. Preclinical assays in GEMM mice tested the antitumor efficacy of taxane-platinum combinations. Outcome measurements and statistical analysis: Proliferation, apoptosis, and colony assays measured drug activity in vitro. Preclinical endpoints in mice included growth, survival, and histopathology. Changes in CXCR2, BCL-2, and chemokines were analyzed by reverse transcriptase quantitative polymerase chain reaction and Western blot. Human expression data were analyzed using Gene Set Enrichment Analysis, hierarchical clustering, and correlation studies. GraphPad Prism software and R-studio were used for statistical and data analyses. Results and limitations: Transcriptomic data from taxane-exposed human mCRPC tumors correlate with a marked negative enrichment of apoptosis and inflammatory response pathways accompanied by a marked downregulation of CXCR2 and BCL-2. Mechanistically, we show that docetaxel inhibits CXCR2 and that BCL-2 downregulation occurs as a downstream effect. Further, we demonstrated in experimental models that the sensitivity to cisplatin is dependent on CXCR2 and BCL-2, and that targeting them sensitizes prostate cancer (PC) cells to cisplatin. In vivo taxane-platinum combinations are highly synergistic, and previous exposure to taxanes sensitizes mCRPC tumors to second-line cisplatin treatment. Conclusions: The hitherto unappreciated attenuation of the CXCR2/BCL-2 axis in taxane-treated mCRPC patients is an acquired vulnerability with potential predictive activity for platinum-based treatments. Patient summary: A subset of patients with aggressive and therapy-resistant prostate cancer benefits from taxane-platinum combination chemotherapy; however, we lack the mechanistic understanding of how that synergistic effect occurs. Here, using patient data and preclinical models, we found that taxanes reduce cancer cell escape mechanisms to chemotherapy-induced cell death, hence making these cells more vulnerable to additional platinum treatment.This work was supported by funding from the “Badalona Foundation Against Cancer” grant (Albert Font) and from Instituto de Salut Carlos III (PI16/01070 and CP15/00090; Alvaro Aytes), the European Association of Urology Research Foundation (EAURF/407003/XH; Alvaro Aytes),Fundacion BBVA (Alvaro Aytes), Department of Defense Award (W81XWH-18-1-0193; Alvaro Aytes), the CERCA Program/Generalitat de Catalunya (Alvaro Aytes), and FEDER funds/European Regional Development Fund (ERDF)—a way to Build Europe (Alvaro Aytes
    corecore