7 research outputs found

    Arsenic and chromium topsoil levels and cancer mortality in Spain

    Get PDF
    Spatio-temporal cancer mortality studies in Spain have revealed patterns for some tumours which display a distribution that is similar across the sexes and persists over time. Such characteristics would be common to tumours that shared risk factors, including the chemical soil composition. The objective of the present study is to assess the association between levels of chromium and arsenic in soil and the cancer mortality. This is an ecological cancer mortality study at municipal level, covering 861,440 cancer deaths in 7917 Spanish mainland towns from 1999 to 2008. Chromium and arsenic topsoil levels (partial extraction) were determined by ICP-MS at 13,317 sampling points. To estimate the effect of these concentrations on mortality, we fitted Besag, York and Mollié models, which included, as explanatory variables, each town’s chromium and arsenic soil levels, estimated by kriging. In addition, we also fitted geostatistical-spatial models including sample locations and town centroids (non-aligned data), using the integrated nested Laplace approximation (INLA) and stochastic partial differential equations (SPDE). All results were adjusted for socio-demographic variables and proximity to industrial emissions. The results showed a statistical association in men and women alike, between arsenic soil levels and mortality due to cancers of the stomach, pancreas, lung and brain and non-Hodgkin’s lymphomas (NHL). Among men, an association was observed with cancers of the prostate, buccal cavity and pharynx, oesophagus, colorectal and kidney. Chromium topsoil levels were associated with mortality among women alone, in cancers of the upper gastrointestinal tract, breast and NHL. Our results suggest that chronic exposure arising from low levels of arsenic and chromium in topsoil could be a potential risk factor for developing cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11356-016-6806-y) contains supplementary material, which is available to authorized users

    Estudio geoquímico de los sedimentos de llanura de inundación en la cuenca de los ríos Tinto y Odiel (Huelva)

    No full text
    Los sedimentos de las llanuras de inundación pueden actuar como almacén y registro de elementos contaminantes transportados por los ríos. En este trabajo se examinan estos sedimentos en los sistemas de los ríos Odiel y Tinto, ambos situados en la Faja Pirítica Ibérica. Se han estudiado varios perfiles verticales completos en sus respectivas llanuras de inundación (dos en el caso del Odiel y un perfil, en el caso del Tinto). Las muestras tomadas se tamizaron a <63 µm y han sido sometidas a un análisis de los contenidos totales de los elementos mediante Espectrometría de Masas con Plasma de Acoplamiento Inducido (ICP-MS), Espectrometría de Emisión Atómica con Plasma de Acoplamiento Inducido (ICP-AES) y Análisis Instrumental por Activación Neutrónica (INAA). Los resultados obtenidos muestran diferencias apreciables entre los rasgos geoquímicos de la llanura de inundación del Tinto y del Odiel. Estas diferencias están relacionadas con las mineralizaciones y las composiciones de los materiales de las cuencas, además de por la propia evolución de la llanura. Se han detectado en la vertical algunos episodios especialmente llamativos por su elevado contenido en elementos contaminantes, que se relacionan con reboses de balsas de residuos o movilización de escombreras a causa de precipitaciones excepcionales. El hecho de que, además, el sedimento de corriente actual presente menores concentraciones en la mayoría de los elementos metálicos analizados, confirma que los sedimentos de llanuras de inundación acumulan los contaminantes descargados en el pasado.Instituto Geológico y Minero de España, EspañaEscuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid, Españ

    Association between heavy metal and metalloid levels in topsoil and cancer mortality in Spain

    Get PDF
    Spatio-temporal cancer mortality studies in Spain have revealed patterns for some tumours which display a distribution that is similar across the sexes and persists over time. Such characteristics would be common to tumours that shared risk factors, including the geochemical composition of the soil. The aim of this study was to assess the possible association between heavy metal and metalloid levels in topsoil (upper soil horizon) and cancer mortality in mainland Spain. Ecological cancer mortality study at a municipal level, covering 861,440 cancer deaths (27 different tumour locations) in 7917 Spanish mainland towns, from 1999 to 2008. The elements included in this analysis were Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Topsoil levels (partial extraction) were determined by ICP-MS at 13,317 sampling points. For the analysis, the data on the topsoil composition have been transformed by the centred logratio (clr-transformation). Principal factor analysis was performed to obtain independent latent factors for the transformed variables. To estimate the effect of heavy metal levels in topsoil composition on mortality, we fitted Besag, York and Mollié models, which included each town's factor scores as the explanatory variable. Integrated Nested Laplace Approximation (INLA) was used as a tool for Bayesian inference. All results were adjusted for sociodemographic variables. The results showed an association between trace contents of heavy metals and metalloids in topsoil and mortality due to tumours of the digestive system in mainland Spain. This association was observed in both sexes, something that would support the hypothesis that the incorporation of heavy metals into the trophic chain might be playing a role in the aetiology of some types of cancer. Topsoil composition and the presence of potentially toxic elements in trace concentrations might be an additional component in the aetiology of some types of cancer, and go some way to determine the ensuing geographic differences in mortality in Spain. The results support the interest of inclusion of heavy metal levels in topsoil as a hypothesis in analytical epidemiological studies using biological markers of exposure to heavy metals and metalloids.The study was partially supported by research grants from the Carlos III Institute of Health (PI4CIII/50) and Spanish Health Research Fund (FIS PI11/00871 and FIS CP11/00112). Mortality data were supplied by the Spanish National Statistics Institute in accordance with a specific confidentiality protocol.S

    Mercury in European agricultural and grazing land soils

    No full text
    Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 x 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale

    Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data

    No full text
    Total organic carbon (TOC)contents in agricultural soil are presently receiving increased attention, not only because of their relationship to soil fertility, but also due to the sequestration of organic carbon in soil to reduce carbon dioxide emissions. In this research, the spatial patterns of TOC and its relationship with pH at the European scale were studied using hot spot analysis based on the agricultural soil results of the Geochemical Mapping of Agricultural Soil (GEMAS)project. The hot and cold spot maps revealed the overall spatial patterns showing a negative correlation between TOC contents and pH values in European agricultural soil. High TOC contents accompanying low pH values in the north-eastern part of Europe (e.g., Fennoscandia), and low TOC with high pH values in the southern part (e.g., Spain, Italy, Balkan countries). A special feature of co-existence of comparatively low TOC contents and low pH values in north-central Europe was also identified on hot and cold spot analysis maps. It has been found that these patterns are strongly related to the high concentration of SiO 2 (quartz)in the coarse-textured glacial sediments in north-central Europe. The hot spot analysis was effective, therefore, in highlighting the spatial patterns of TOC in European agricultural soil and helpful to identify hidden patterns
    corecore