9 research outputs found

    Searching for Immune Tolerance Manipulating New Molecules and Exploiting New Concepts on Lymphocyte Biology

    No full text
    The break on immune tolerance is a common point between autoimmune diseases and the uncontrolled effector immune responses against allo-antigens in transplantation. Among the past years, several approaches to restore a suppressive immune state have included the targeting of co-stimulatory/inhibitory molecules on immune cells, the promotion or blockade of pivotal cytokines, and the extensive study on how to isolate and expand suppressive cells with the purpose to re-infuse them in patients. To date, the availability of new technologies has permitted to learn, in a more detailed way, the immune mechanisms carried out by suppressive lymphocytes, together with the identification of new potential candidates to target in our quest for immune tolerance. For example, the attractive concepts of lymphocyte plasticity and function stability, supported by the finding of new transcription factors, have opened a new window in the understanding of T cell differentiation, effector cell commitment and immune regulatory function. On the other hand, the discovery of new members of the Ig superfamily ligand, VISTA; the intriguing role of modulatory molecules like Retinoic Acid, Neuropilin-1, Fc gamma receptors, or cytokines such as IL-33, among others, are revealing new possibilities in the development of new strategies to conquer our obsession: immune tolerance. Here, we gather the latest information regarding new targets and cellular processes, including an update on current cellular therapies and the exciting coming approaches to cure autoimmunity and permit transplant acceptance

    Therapeutic potential of hyporesponsive CD4+ T cells in autoimmunity

    No full text
    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T cell deletion, generation of regulatory T cells and/or induction of T cell anergy. Anergy is defined as an unresponsive state that retains T cells in an off mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T cells responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies were shown to modulate immune responses by inducing T cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T cell anergy on disease development and progression in vivo. Thus, the induction of T cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T cell-mediated autoimmune disorders. Here we review recent findings in the area and discuss the potential of anergy induction for clinical purposes

    Treatment with dexamethasone and monophosphoryl lipid A removes disease-associated transcriptional signatures in monocyte-derived dendritic cells from rheumatoid arthritis patients and confers tolerogenic features

    No full text
    Tolerogenic dendritic cells (TolDCs) are promising tools for therapy of autoimmune diseases such as rheumatoid arthritis (RA). Here we characterise monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA), referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties and T cell-stimulatory capacity, in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of costimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating towards the lymphoid chemokines CXCL12 and CCL19. These MPLA-tDCs induced hyporesponsiveness of autologous CD4+ T cells specific for synovial antigens in vitro. Global transcriptome analysis confirmed a unique transcriptional profile of MPLA-tDCs and revealed that RA-associated genes, which were upregulated in untreated DCs from RA patients, returned to expression levels of healthy donor-derived DCs after treatment with dexamethasone and MPLA. Thus, monocyte-derived DCs from RA patients have the capacity to develop tolerogenic features at transcriptional as well as at translational level, when modulated with dexamethasone and MPLA, overcoming disease-related effects. Furthermore, the ability of MPLA-tDCs to impair T cell responses to synovial antigens validates their potential as cellular treatment for RA

    Dexamethasone and monophosphoryl lipid a induce a distinctive profile on monocyte-derived dendritic cells through transcriptional modulation of genes associated with essential processes of the immune response

    No full text
    There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs. We found that DM-DCs exhibit a distinctive transcriptional profile compared to untreated (DCs) and MPLA-matured DCs. Differentially expressed genes downregulated by DM included MMP12, CD1c, IL-1B, and FCER1A involved in DC maturation/inflammation and genes upregulated by DM included JAG1, MERTK, IL-10, and IDO1 involved in tolerance. Genes related to chemotactic responses, cell-to-cell signaling and interaction, fatty acid oxidation, metal homeostasis, and free radical scavenging were strongly enriched, predicting the activation of alternative metabolic processes than those driven by counterpart DCs. Furthermore, we identified a set of genes that were regulated exclusively by the combined action of Dex and MPLA, which are mainly involved in the control of zinc homeostasis and reactive oxygen species production. These data further support the important role of metabolic processes on the control of the DC-driven regulatory immune response. Thus, Dex and MPLA treatments modify gene expression in moDCs by inducing a particular transcriptional profile characterized by the activation of tolerance-associated genes and suppression of the expression of inflammatory genes, conferring the potential to exert regulatory functions and immune response modulation

    Differential Profile of Systemic Extracellular Vesicles From Sporadic and Familial Alzheimer's Disease Leads to Neuroglial and Endothelial Cell Degeneration

    Get PDF
    Evidence suggests that extracellular vesicles (EVs) act as mediators and biomarkers of neurodegenerative diseases. Two distinct forms of Alzheimer disease (AD) are known: a late-onset sporadic form (SAD) and an early-onset familial form (FAD). Recently, neurovascular dysfunction and altered systemic immunological components have been linked to AD neurodegeneration. Therefore, we characterized systemic-EVs from postmortem SAD and FAD patients and evaluated their effects on neuroglial and endothelial cells. We found increase CLN-5 spots with vesicular morphology in the abluminal portion of vessels from SAD patients. Both forms of AD were associated with larger and more numerous systemic EVs. Specifically, SAD patients showed an increase in endothelial- and leukocyte-derived EVs containing mitochondria; in contrast, FAD patients showed an increase in platelet-derived EVs. We detected a differential protein composition for SAD- and FAD-EVs associated with the coagulation cascade, inflammation, and lipid-carbohydrate metabolism. Using mono- and cocultures (endothelium-astrocytes-neurons) and human cortical organoids, we showed that AD-EVs induced cytotoxicity. Both forms of AD featured decreased neuronal branches area and astrocytic hyperreactivity, but SAD-EVs led to greater endothelial detrimental effects than FAD-EVs. In addition, FAD- and SAD-EVs affected calcium dynamics in a cortical organoid model. Our findings indicate that the phenotype of systemic AD-EVs is differentially defined by the etiopathology of the disease (SAD or FAD), which results in a differential alteration of the NVU cells implied in neurodegeneration

    Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    No full text
    Cellular therapies, with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.This work was supported by a grant from the European Cooperation in Science and Technology (COST) for the AFACTT project (Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies; BM1305). COST is part of the EU Framework Programme Horizon 2020

    Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    No full text
    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application

    Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    Get PDF
    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application
    corecore