2,304 research outputs found
Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits
We propose the implementation of a digital quantum simulation of spin chains
coupled to bosonic field modes in superconducting circuits. Gates with high
fidelities allows one to simulate a variety of Ising magnetic pairing
interactions with transverse field, Tavis-Cummings interaction between spins
and a bosonic mode, and a spin model with three-body terms. We analyze the
feasibility of the implementation in realistic circuit quantum electrodynamics
setups, where the interactions are either realized via capacitive couplings or
mediated by microwave resonators.Comment: Chapter in R. S. Anderssen et al. (eds.), Mathematics for Industry 11
(Springer Japan, 2015
A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect
mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp.published_or_final_versio
Oral chondroitin sulfate and prebiotics for the treatment of canine Inflammatory Bowel Disease: a randomized, controlled clinical trial
BACKGROUND
Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress.
RESULTS
Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group.
CONCLUSIONS
The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI
Histological evidence for a supraspinous ligament in sauropod dinosaurs
Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentin
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
Lineage Divergence and Historical Gene Flow in the Chinese Horseshoe Bat (Rhinolophus sinicus)
PMCID: PMC3581519This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Dynamics of dental evolution in ornithopod dinosaurs.
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution
The sudden change phenomenon of quantum discord
Even if the parameters determining a system's state are varied smoothly, the
behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in
its rate of change. Here we review this sudden change phenomenon (SCP)
discussing some important points related to it: Its uncovering,
interpretations, and experimental verifications, its use in the context of the
emergence of the pointer basis in a quantum measurement process, its appearance
and universality under Markovian and non-Markovian dynamics, its theoretical
and experimental investigation in some other physical scenarios, and the
related phenomenon of double sudden change of trace distance discord. Several
open questions are identified, and we envisage that in answering them we will
gain significant further insight about the relation between the SCP and the
symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F.
F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp
309-33
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Cooperation among cancer cells: applying game theory to cancer
Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation
- …
