60 research outputs found

    Evolution Of A Higher Intracellular Oxidizing Environment In Caenorhabditis Elegans Under Relaxed Selection

    Get PDF
    We explored the relationship between relaxed selection, oxidative stress, and spontaneous mutation in a set of mutation-accumulation (MA) lines of the nematode Caenorhabditis elegans and in their common ancestor. We measured steady-state levels of free radicals and oxidatively damaged guanosine nucleosides in the somatic tissues of five MA lines for which nuclear genome base substitution and GC-TA transversion frequencies are known. The two markers of oxidative stress are highly correlated and are elevated in the MA lines relative to the ancestor; point estimates of the per-generation rate of mutational decay (DM) of these measures of oxidative stress are similar to those reported for fitness-related traits. Conversely, there is no significant relationship between either marker of oxidative stress and the per-generation frequencies of base substitution or GC-TA transversion. Although these results provide no direct evidence for a causative relationship between oxidative damage and base substitution mutations, to the extent that oxidative damage may be weakly mutagenic in the germline, the case for condition-dependent mutation is advanced

    Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    Get PDF
    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change

    Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    Get PDF
    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes

    Oxidative Stress in Aquatic Ecosystems: Selected papers from the First International Conference

    Get PDF
    Fil: Joyner Matos, Joanna. Eastern Washington University; Estados UnidosFil: Puntarulo, Susana Angela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Vásquez Medina, José Pablo. University of California Merced; Estados UnidosFil: Zenteno Zabin, Tania. Instituto Politécnico Nacional; Méxic

    Andrew et al Heredity Data file

    No full text
    This data file contains two data spreadsheets and two readme spreadsheets. One data sheet contains the traits measured in the thermal stress, oxidative stress, and hyperosmotic stress assays with Caenorhabditis elegans mutation accumulation lines. The other data sheet contains the first day's reproductive success of nematodes from the oxidative and hyperosmotic stress assays

    Data from: Abiotic stress does not magnify the deleterious effects of spontaneous mutations

    No full text
    Although the effects of deleterious alleles often are predicted to be greater in stressful environments, there is no theoretical basis for this prediction and the empirical evidence is mixed. Here we characterized the effects of three types of abiotic stress (thermal, oxidative and hyperosmotic) on two sets of nematode (Caenorhabditis elegans) mutation accumulation (MA) lines that differ by threefold in fitness. We compared the survival and egg-to-adult viability between environments (benign and stressful) and between fitness categories (high-fitness MA, low-fitness MA). If the environment and mutation load have synergistic effects on trait means, then the difference between the high and low-fitness MA lines should be larger in stressful environments. Although the stress treatments consistently decreased survival and/or viability, we did not detect significant interactions between fitness categories and environment types. In contrast, we did find consistent evidence for synergistic effects on (micro)environmental variation. The lack of signal in trait means likely reflects the very low starting fitness of some low-fitness MA lines, the potential for cross-stress responses and the context dependence of mutational effects. In addition, the large increases in the environmental variance in the stressful environments may have masked small changes in trait means. These results do not provide evidence for synergism between mutation and stress
    corecore