517 research outputs found

    Therapeutic targeting of the tumor microenvironment

    Get PDF

    Identification and Characterization of Poorly Differentiated Invasive Carcinomas in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis

    Get PDF
    Pancreatic neuroendocrine tumors (PanNETs) are a relatively rare but clinically challenging tumor type. In particular, high grade, poorly-differentiated PanNETs have the worst patient prognosis, and the underlying mechanisms of disease are poorly understood. In this study we have identified and characterized a previously undescribed class of poorly differentiated PanNETs in the RIP1-Tag2 mouse model. We found that while the majority of tumors in the RIP1-Tag2 model are well-differentiated insulinomas, a subset of tumors had lost multiple markers of beta-cell differentiation and were highly invasive, leading us to term them poorly differentiated invasive carcinomas (PDICs). In addition, we found that these tumors exhibited a high mitotic index, resembling poorly differentiated (PD)-PanNETs in human patients. Interestingly, we identified expression of Id1, an inhibitor of DNA binding gene, and a regulator of differentiation, specifically in PDIC tumor cells by histological analysis. The identification of PDICs in this mouse model provides a unique opportunity to study the pathology and molecular characteristics of PD-PanNETs

    A World-Volume Perspective on the Recombination of Intersecting Branes

    Full text link
    We study brane recombination for supersymmetric configurations of intersecting branes in terms of the world-volume field theory. This field theory contains an impurity, corresponding to the degrees of freedom localized at the intersection. The Higgs branch, on which the impurity fields condense, consists of vacua for which the intersection is deformed into a smooth calibrated manifold. We show this explicitly using a superspace formalism for which the calibration equations arise naturally from F- and D-flatness.Comment: References adde

    Compromised Blood-Brain Barrier Junctions Enhance Melanoma Cell Intercalation and Extravasation

    Get PDF
    Melanoma frequently metastasises to the brain, and a detailed understanding of the molecular and cellular mechanisms underlying melanoma cell extravasation across the blood-brain barrier (BBB) is important for preventing brain metastasis formation. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as an in vitro BBB model, we imaged the interaction of melanoma cells into pMBMEC monolayers. We observed exclusive junctional intercalation of melanoma cells and confirmed that melanoma-induced pMBMEC barrier disruption can be rescued by protease inhibition. Interleukin (IL)-1β stimulated pMBMECs or PECAM-1-knockout (-ko) pMBMECs were employed to model compromised BBB barrier properties in vitro and to determine increased melanoma cell intercalation compared to pMBMECs with intact junctions. The newly generated brain-homing melanoma cell line YUMM1.1-BrM4 was used to reveal increased in vivo extravasation of melanoma cells across the BBB of barrier-compromised PECAM-1-deficient mice compared to controls. Taken together, our data indicate that preserving BBB integrity is an important measure to limit the formation of melanoma-brain metastasis

    Deficiency for the Cysteine Protease Cathepsin L Impairs Myc-Induced Tumorigenesis in a Mouse Model of Pancreatic Neuroendocrine Cancer

    Get PDF
    Motivated by the recent implication of cysteine protease cathepsin L as a potential target for anti-cancer drug development, we used a conditional MycER(TAM); Bcl-x(L) model of pancreatic neuroendocrine tumorigenesis (PNET) to assess the role of cathepsin L in Myc-induced tumor progression. By employing a cysteine cathepsin activity probe in vivo and in vitro, we first established that cathepsin activity increases during the initial stages of MycER(TAM); Bcl-x(L) tumor development. Among the cathepsin family members investigated, only cathepsin L was predominately produced by beta-tumor cells in neoplastic pancreata and, consistent with this, cathepsin L mRNA expression was rapidly upregulated following Myc activation in the beta cell compartment. By contrast, cathepsins B, S and C were highly enriched in tumor-infiltrating leukocytes. Genetic deletion of cathepsin L had no discernible effect on the initiation of neoplastic growth or concordant angiogenesis. However, the tumors that developed in the cathepsin L-deficient background were markedly reduced in size relative to their typical wild-type counterparts, indicative of a role for cathepsin L in enabling expansive tumor growth. Thus, genetic blockade of cathepsin L activity is inferred to retard Myc-driven tumor growth, encouraging the potential utility of pharmacological inhibitors of cysteine cathepsins in treating late stage tumors

    Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment

    Get PDF
    Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM

    Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer

    Get PDF
    Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors. The oncoprotein c-Myc is often overexpressed in triple negative breast cancer and has a role in tumor progression and resistance to therapy. Here the authors show that elevated MYC expression is correlated with low immune infiltration, diminished MHC-I pathway expression and that CpG/aOX40 treatment could overcome resistance to PD-L1 blockade in MYC-high breast tumors.Peer reviewe

    Telomere Length and Mental Well-Being in Elderly Men from the Netherlands and Greece

    Get PDF
    Telomeres, repetitive DNA sequences that promote chromosomal stability, have been related to different measures of mental well-being and self-rated health, but mainly in women during adulthood. We aimed to investigate whether accelerated telomere shortening is associated with poor mental well-being and poor self-rated health in community-dwelling elderly men. Leukocyte telomere length was measured using quantitative PCR in two different samples of 203 elderly men (mean age 78 years) from the Netherlands in 1993, and 123 elderly men (mean age 84 years) from Greece in 2000. We also obtained follow-up data in 2000 from 144 Dutch subjects, of whom 75 had paired telomere length data in 1993 and 2000. Mental well-being was conceptualized as dispositional optimism, depressive symptoms, cognitive functioning, and loneliness. Linear regression analyses were used to study the association between telomere length, measures of mental well being, and self-rated health, while adjusting for potential confounders. In cross-sectional analyses, leukocyte telomere length was not associated with measures of mental well-being and self-rated health, neither in the Netherlands nor in Greece. Also, the rate of leukocyte telomere shortening (mean decrease: 0.28 kbp over 7 years) in the 75 Dutch participants with longitudinal data was not associated with changes in different measures of mental well-being and self-rated health. Thus, our results provide no support for a relationship between leukocyte telomere length and mental well-being in elderly community-dwelling men
    corecore