259 research outputs found

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    On the word problem for SP-categories, and the properties of two-way communication

    No full text
    International audienceThe word problem for categories with free products and coproducts (sums), SP-categories, is directly related to the problem of determining the equivalence of certain processes. Indeed, the maps in these categories may be directly interpreted as processes which communicate by two-way channels. The maps of an SP-category may also be viewed as a proof theory for a simple logic with a game theoretic intepretation. The cut-elimination procedure for this logic determines equality only up to certain permuting conversions. As the equality classes under these permuting conversions are finite, it is easy to see that equality between cut-free terms (even in the presence of the additive units) is decidable. Unfortunately, this does not yield a tractable decision algorithm as these equivalence classes can contain exponentially many terms. However, the rather special properties of these free categories -- and, thus, of two-way communication -- allow one to devise a tractable algorithm for equality. We show that, restricted to cut-free terms s,t : X --> A, the decision procedure runs in time polynomial on |X||A|, the product of the sizes of the domain and codomain type

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Generalised Compositional Theories and Diagrammatic Reasoning

    Get PDF
    This chapter provides an introduction to the use of diagrammatic language, or perhaps more accurately, diagrammatic calculus, in quantum information and quantum foundations. We illustrate the use of diagrammatic calculus in one particular case, namely the study of complementarity and non-locality, two fundamental concepts of quantum theory whose relationship we explore in later part of this chapter. The diagrammatic calculus that we are concerned with here is not merely an illustrative tool, but it has both (i) a conceptual physical backbone, which allows it to act as a foundation for diverse physical theories, and (ii) a genuine mathematical underpinning, permitting one to relate it to standard mathematical structures.Comment: To appear as a Springer book chapter chapter, edited by G. Chirabella, R. Spekken

    A Physicist's Proof of the Lagrange-Good Multivariable Inversion Formula

    Full text link
    We provide yet another proof of the classical Lagrange-Good multivariable inversion formula using techniques of quantum field theory.Comment: 9 pages, 3 diagram

    Categorical formulation of quantum algebras

    Full text link
    We describe how dagger-Frobenius monoids give the correct categorical description of certain kinds of finite-dimensional 'quantum algebras'. We develop the concept of an involution monoid, and use it to construct a correspondence between finite-dimensional C*-algebras and certain types of dagger-Frobenius monoids in the category of Hilbert spaces. Using this technology, we recast the spectral theorems for commutative C*-algebras and for normal operators into an explicitly categorical language, and we examine the case that the results of measurements do not form finite sets, but rather objects in a finite Boolean topos. We describe the relevance of these results for topological quantum field theory.Comment: 34 pages, to appear in Communications in Mathematical Physic

    The fusion algebra of bimodule categories

    Full text link
    We establish an algebra-isomorphism between the complexified Grothendieck ring F of certain bimodule categories over a modular tensor category and the endomorphism algebra of appropriate morphism spaces of those bimodule categories. This provides a purely categorical proof of a conjecture by Ostrik concerning the structure of F. As a by-product we obtain a concrete expression for the structure constants of the Grothendieck ring of the bimodule category in terms of endomorphisms of the tensor unit of the underlying modular tensor category.Comment: 16 page

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure

    Combinatorial Hopf algebras and Towers of Algebras

    Full text link
    Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras n0An\bigoplus_{n\ge0}A_n can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of algebras. We show that if a tower n0An\bigoplus_{n\ge0}A_n gives rise to graded dual Hopf algebras then we must have dim(An)=rnn!\dim(A_n)=r^nn! where r=dim(A1)r = \dim(A_1).Comment: 7 page
    corecore