The primary contribution of this paper is to give a formal, categorical
treatment to Penrose's abstract tensor notation, in the context of traced
symmetric monoidal categories. To do so, we introduce a typed, sum-free version
of an abstract tensor system and demonstrate the construction of its associated
category. We then show that the associated category of the free abstract tensor
system is in fact the free traced symmetric monoidal category on a monoidal
signature. A notable consequence of this result is a simple proof for the
soundness and completeness of the diagrammatic language for traced symmetric
monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda