Abstract

We establish an algebra-isomorphism between the complexified Grothendieck ring F of certain bimodule categories over a modular tensor category and the endomorphism algebra of appropriate morphism spaces of those bimodule categories. This provides a purely categorical proof of a conjecture by Ostrik concerning the structure of F. As a by-product we obtain a concrete expression for the structure constants of the Grothendieck ring of the bimodule category in terms of endomorphisms of the tensor unit of the underlying modular tensor category.Comment: 16 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019