8 research outputs found

    A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake

    Get PDF
    Abstract. Multiple stressors to a shallow lake ecosystem have the ability to control the relative stability of alternative states (clear, macrophyte-dominated or turbid, algaldominated). As a consequence, the use of remedial biomanipulations to induce trophic cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we show the instability of short-term manipulations in the shallow Lake Christina (Minnesota, USA) is governed by the long-term state following a regime shift in the lake. During the modern, managed period of the lake, three top-down manipulations (fish kills) were undertaken inducing temporary (5-10 years) unstable clear-water states. Paleoecological remains of diatoms, along with proxies of primary production (total chlorophyll a and total organic carbon accumulation rate) and trophic state (total P) from sediment records clearly show a single regime shift in the lake during the early 1950s; following this shift, the functioning of the lake ecosystem is dominated by a persistent turbid state. We find that multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from agricultural land use and/or increased waterfowl populations), leading to a dramatic increase in primary production. Soon after, the construction of a dam in 1936 effectively doubled the depth of the lake, compounded by increases in regional humidity; this resulted in an increase in planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further conspired to increase the stability of a turbid regime during the modern managed period, such that switches to a clear-water state were inherently unstable and the lake consistently returned to a turbid state. We conclude that while top-down manipulations have had measurable impacts on the lake state, they have not been effective in providing a return to an ecosystem similar to the stable historical period. Our work offers an example of a well-studied ecosystem forced by multiple stressors into a new long-term managed period, where manipulated clearwater states are temporary, managed features

    Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA

    No full text
    Intensive agricultural practices can dramatically change the landscape, thereby increasing the concentrations and rates at which nutrients are delivered to aquatic ecosystems. In the United States, concerns about accelerating rates of lake eutrophication related to increases in nutrient loading require a method of quantifying ecological changes that have occurred since European settlement. Because the application of traditional quantitative total phosphorus transfer functions in paleolimnology has proven difficult in shallow, hypereutrophic lakes, we used several approaches in this study to assess ecosystem changes associated with eutrophication of 32 natural lakes in the state of Iowa, USA. In addition to traditional transfer function methods, we estimated changes in primary productivity from the flux of biogenic silica (BSi) and organic carbon accumulation rates (OC AR). Additionally, we compared pre-disturbance diatom communities to modern diatom communities, i.e. floristic change, using non-metric multi-dimensional scaling and square chord distance. OC AR and BSi fluxes increased over time and were positively correlated with the time period of agricultural intensification in the region (post-1940). Ninety-one percent of the lakes in this study showed evidence for eutrophication based on geochemical proxies, and 88 % of lakes showed major floristic change in the diatom community. Whereas geochemical indicators showed consistent increases in productivity across most lakes, floristic changes reflected more complex interactions between other environmental drivers. The magnitude of floristic change did not directly correlate to nutrient-driven increases in primary production, but was driven by ecological diatom assembly related to lake depth. Transfer functions consistently perform poorly, especially for shallow lakes, and other techniques that combine geochemistry and diatom ecology are recommended for reconstructions of eutrophication

    Data from: The legacy of large regime shifts in shallow lakes

    No full text
    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. Here we examine the modern and historical stability of eleven shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 years suggest that: 1) the diatom assemblage is characteristic of either clear or turbid lakes; 2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state; 3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 years, and have since remained in a regime where turbid-water predominates; and 4) top-down impacts to the lake food web from fish introductions appear to be the dominant driver of strong regime shifts, and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention

    Spatial Habitat Structure Assembles Willow-Dependent Communities across the Primary Successional Watersheds of Mount St. Helens, USA

    No full text
    The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka willow (Salix sitchensis) and their dependent communities have been established along newly-formed streams. Thus, the study of these dependent communities provides a unique and rare opportunity to investigate factors influencing metacommunity assembly during true primary succession. We analyzed the influence of landscape connectivity on metacommunity assembly through a novel application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf chemistry, and leaf area. We found that landscape connectivity structures community composition on willows across the Pumice Plain, where the least connected willows favored active flyers such as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of invasive species

    Ramstack Hobbs_Ecological Applications_2016

    No full text
    This file contains diatom species data from eleven shallow lake sediment cores from the Prairie Pothole Region of Minnesota, USA. The file also contains diatom species and environmental data for a 145-lake calibration set from the state of Minnesota. The first sheet of this spreadsheet gives a full description of the data
    corecore